80 research outputs found
Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1−/Δ7 Mice
textabstractAlthough it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-week bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20 weeks, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (< 10 μm) mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum - but not with L. casei and B. breve - prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly
Myeloid IκBα Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques
Activation of the transcription factor NF-κB appears to be involved in different stages of atherogenesis. In this paper we investigate the role of NF-κB inhibitor IκBα in atherosclerosis. Myeloid-specific deletion of IκBα results in larger and more advanced lesions in LDL-R-deficient mice without affecting the compositional phenotype of the plaques or systemic inflammatory markers in the plasma. We show that IκBα-deleted macrophages display enhanced adhesion to an in vitro endothelial cell layer, coinciding with an increased expression of the chemokine CCL5. Also, in vivo we found that IκBαdel mice had more leukocytes adhering to the luminal side of the endothelial cell layers that cover the atherosclerotic plaques. Moreover, we introduce ER-MP58 in this paper as a new immunohistochemical tool for quantifying newly recruited myeloid cells in the atherosclerotic lesion. This staining confirms that in IκBαdel mice more leukocytes are attracted to the plaques. In conclusion, we show that IκBα deletion in myeloid cells promotes atherogenesis, probably through an induced leukocyte recruitment to plaques
Long-term glucocorticoid exposure and incident cardiovascular diseases - the Lifelines cohort
CONTEXT: Long-term glucocorticoid levels in scalp hair (HairGCs), including cortisol and the inactive form cortisone, represent the cumulative systemic exposure to glucocorticoids over months. HairGCs have repeatedly shown associations with cardiometabolic and immune parameters, but longitudinal data are lacking.DESIGN: We investigated 6341 hair samples of participants from the Lifelines cohort study for cortisol and cortisone levels, and associated these to incident cardiovascular diseases (CVD) during 5-7 years of follow-up. We computed the odds ratio (OR) of HairGC levels for incident CVD via logistic regression, adjusting for classical cardiovascular risk factors, and performed a sensitivity analysis in subcohorts of participants <60 years and >= 60 years. Also, we associated HairGC levels to immune parameters (total leukocytes and subtypes).RESULTS: Hair cortisone levels (available in n = 4701) were independently associated with incident CVD (p < 0.001), particularly in younger individuals (multivariate-adjusted OR 4.21, 95% confidence interval (CI) 1.91-9.07 per point increase in 10-log cortisone concentration (pg/mg), p < 0.001). All immune parameters except eosinophils were associated with hair cortisone (all multivariate-adjusted p < 0.05).CONCLUSIONS: In this large, prospective cohort study, we found that long-term cortisone levels, measured in scalp hair, represent a relevant and significant predictor for future cardiovascular diseases in younger individuals. These results highlight glucocorticoid action as possible treatment target for CVD prevention, where hair glucocorticoid measurements could help identify individuals that may benefit from such treatments.</p
Оптимизация параметров лазерного излучения для воздействия на пигменты на основе диоксида титана (TiO2)
В настоящее время не существует методики, позволяющей быстро и безопасно удалять татуировки и перманентный макияж, содержащие пигменты на основе диоксида титана. Тема работы является актуальной в связи с растущим спросом на такие услуги в сфере эстетической медицины, а данный пигмент является базой для широкого спектра пастельных и натуральных оттенков чернил. Объектом исследования являются дисперсные растворы диоксида титана. Целью данной работы является изучение влияния лазерного излучения на пигменты на основе диоксида титана. Полученные данные послужат основой для разработки методов удаления белых пигментов в татуировках и повысят эффективность удаления перманентного макияжа.Currently, there is no method to quickly and safely remove tattoos and permanent makeup containing titanium dioxide pigments. The topic of work is relevant in connection with the growing demand for such services in the field of aesthetic medicine, and this pigment is the base for a wide range of pastel and natural shades of ink. The object of the research are titanium dioxide dispersive solutions. The purpose of this work is to explore the effects of laser radiation on pigments based on titanium dioxide by changing its parameters. The obtained data will serve as the foundation for the development of methods for removing white pigments in tattoos and will increase the effectiveness of permanent makeup removal
Keep your macrophages fit for healthy aging
As age is the greatest risk factor for the development of most prevalent chronic diseases, there is an enormous interest in understanding the process of aging, with the hope of delaying or preventing age-related comorbidities. Along these lines, a recent study by Minhas et al. (2021) describes how aged macrophages downregulate glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), inducing an energy-deficient state that compromises macrophage function and supports maladaptive inflammation that together cause brain dysfunction
Myeloid blasts are the mouse bone marrow cells prone to differentiate into osteoclasts
Cells of the myeloid lineage at various stages of maturity can differentiate into multinucleated osteoclasts. Yet, it is unclear which developmental stages of this lineage are more prone to become osteoclasts than others. We investigated the osteoclastogenic potential of three successive stages of myeloid development isolated from mouse bone marrow. Early blasts (CD31(hi)/Ly-6C(-)), myeloid blasts (CD31(+)/Ly-6C(+)), and monocytes (CD31-/Ly6C(hi)), as well as unfractionated marrow cells, were cultured in the presence of M-CSF and receptor activator of NF-kappa B ligand (RANKL), and the differentiation toward multinucleated cells and their capacity to resorb bone was assessed. Myeloid blasts developed rapidly into multinucleated cells; in only 4 days, maximal numbers were reached, whereas the other fractions required 8 days to reach maximal numbers. Bone resorption was observed after 6 (myeloid blasts and monocyte-derived osteoclasts) and 8 (early blastderived osteoclasts) days. This difference in kinetics in osteoclast-forming capacity was confirmed by the analysis of osteoclast-related genes. In addition, the myeloid blast fraction proved to be most sensitive to M-CSF and RANKL, as assessed with a colony-forming assay. Our results show that osteoclasts can develop from all stages of myeloid differentiation, but myeloid blasts are equipped to do so within a short period of time. J. Leukoc. Biol. 85: 919-927; 2009
Classic and new mediators for in vitro modelling of human macrophages
Macrophages are key immune cells in the activation and regulation of immune responses. These cells are present in all tissues under homeostatic conditions and in many disease settings. Macrophages can exhibit a wide range of phenotypes depending on local and systemic cues that drive the differentiation and activation process. Macrophage heterogeneity is also defined by their ontogeny. Tissue macrophages can either derive from circulating blood monocytes or are seeded as tissue-resident macrophages during embryonic development. In humans, the study of in vivo-generated macrophages is often difficult with laborious and cell-changing isolation procedures. Therefore, translatable, reproducible, and robust in vitro models for human macrophages in health and disease are necessary. Most of the methods for studying monocyte-derived macrophages are based on the use of limited factors to differentiate the monocytes into macrophages. Current knowledge shows that the in vivo situation is more complex, and a wide range of molecules in the tissue microenvironment promote and impact on monocyte to macrophage differentiation as well as activation. In this review, macrophage heterogeneity is discussed and the human in vitro models that can be applied for research, especially for monocyte-derived macrophages. We also focus on new molecules (IL-34, platelet factor 4, etc.) used to generate macrophages expressing different phenotypes
Thymic Dendritic Cells Are Primary Targets for the Oncogenic Virus SL3-3
The murine retrovirus SL3-3 causes malignant transformation of thymocytes and thymic lymphoma in mice of the AKR and NFS strains when they are inoculated neonatally. The objective of the present study was to identify the primary target cells for the virus in the thymuses of these mice. Immunohistochemical studies of the thymus after neonatal inoculation of the SL3-3 virus showed that cells expressing the viral envelope glycoprotein (gp70(+) cells) were first seen at 2 weeks of age. These virus-expressing cells were found in the cortex and at the corticomedullary junction in both mouse strains. The gp70(+) cells had the morphology and immunophenotype of dendritic cells. They lacked macrophage-specific antigens. Cell separation studies showed that bright gp70(+) cells were detected in a fraction enriched for dendritic cells. At 3 weeks of age, macrophages also expressed gp70. At that time, both gp70(+) dendritic cells and macrophages were found at the corticomedullary junction and in foci in the thymic cortex. At no time during this 3-week period was the virus expressed in cortical and medullary epithelial cells or in thymic lymphoid cells. Infectious cell center assays indicated that cells expressing infectious virus were present in small numbers at 2 weeks after inoculation but increased at 5 weeks of age by several orders of magnitude, indicating virus spread to the thymic lymphoid cells. Thus, at 2 weeks after neonatal inoculation of SL3-3, thymic dendritic cells are the first cells to express the virus. At 3 weeks of age, macrophages also express the virus. In subsequent weeks, the virus spreads to the thymocytes. This pathway of virus expression in the thymus allows the inevitable provirus integration in a thymocyte that results in a clonal lymphoma
- …