5,050 research outputs found
A note on Stokes' problem in dense granular media using the --rheology
The classical Stokes' problem describing the fluid motion due to a steadily
moving infinite wall is revisited in the context of dense granular flows of
mono-dispersed beads using the recently proposed --rheology. In
Newtonian fluids, molecular diffusion brings about a self-similar velocity
profile and the boundary layer in which the fluid motion takes place increases
indefinitely with time as , where is the kinematic
viscosity. For a dense granular visco-plastic liquid, it is shown that the
local shear stress, when properly rescaled, exhibits self-similar behaviour at
short-time scales and it then rapidly evolves towards a steady-state solution.
The resulting shear layer increases in thickness as analogous
to a Newtonian fluid where is an equivalent granular kinematic
viscosity depending not only on the intrinsic properties of the granular media
such as grain diameter , density and friction coefficients but also
on the applied pressure at the moving wall and the solid fraction
(constant). In addition, the --rheology indicates that this growth
continues until reaching the steady-state boundary layer thickness , independent of the grain size, at about a finite
time proportional to , where is
the acceleration due to gravity and is the
relative surplus of the steady-state wall shear-stress over the
critical wall shear stress (yield stress) that is needed to bring the
granular media into motion... (see article for a complete abstract).Comment: in press (Journal of Fluid Mechanics
Quantifying Timing Leaks and Cost Optimisation
We develop a new notion of security against timing attacks where the attacker
is able to simultaneously observe the execution time of a program and the
probability of the values of low variables. We then show how to measure the
security of a program with respect to this notion via a computable estimate of
the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the
proceedings of ICICS'08 - 10th International Conference on Information and
Communications Security, 20-22 October, 2008 Birmingham, U
Probabilistic abstract interpretation: From trace semantics to DTMC’s and linear regression
In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties
An Algorithmic Approach to Quantum Field Theory
The lattice formulation provides a way to regularize, define and compute the
Path Integral in a Quantum Field Theory. In this paper we review the
theoretical foundations and the most basic algorithms required to implement a
typical lattice computation, including the Metropolis, the Gibbs sampling, the
Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis
is on gauge theories with fermions such as QCD. We also provide examples of
typical results from lattice QCD computations for quantities of
phenomenological interest.Comment: 44 pages, to be published in IJMP
Lattice study of two-dimensional N=(2,2) super Yang-Mills at large-N
We study two-dimensional N=(2,2) SU(N) super Yang-Mills theory on Euclidean
two-torus using Sugino's lattice regularization. We perform the Monte-Carlo
simulation for N=2,3,4,5 and then extrapolate the result to N = infinity. With
the periodic boundary conditions for the fermions along both circles, we
establish the existence of a bound state in which scalar fields clump around
the origin, in spite of the existence of a classical flat direction. In this
phase the global (Z_N)^2 symmetry turns out to be broken. We provide a simple
explanation for this fact and discuss its physical implications.Comment: 24 pages, 13 figure
A computational group theoretic symmetry reduction package for the SPIN model checker
Symmetry reduced model checking is hindered by two problems: how to identify state space symmetry when systems are not fully symmetric, and how to determine equivalence of states during search. We present TopSpin, a fully automatic symmetry reduction package for the Spin model checker. TopSpin uses the Gap computational algebra system to effectively detect state space symmetry from the associated Promela specification, and to choose an efficient symmetry reduction strategy by classifying automorphism groups as a disjoint/wreath product of subgroups. We present encouraging experimental results for a variety of Promela examples
Oncogenic K-Ras suppresses IP<sub>3</sub>-dependent Ca<sup>2+</sup> release through remodeling of IP<sub>3</sub>Rs isoform composition and ER luminal Ca<sup>2+</sup> levels in colorectal cancer cell lines
The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine inases that controls multiple cell fate-determining signalling athways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of KRasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival
advantage during oncogenic transformation
Towards a lattice determination of the coupling
The coupling is related to the form factor at zero
momentum of the axial current between - and -states. This form
factor is evaluated on the lattice using static heavy quarks and light quark
propagators determined by a stochastic inversion of the fermionic bilinear. The
\gBBP coupling is related to the coupling between heavy mesons and
low-momentum pions in the effective heavy meson chiral lagrangian. The coupling
of the effective theory can therefore be computed by numerical simulations. We
find the value . Besides its theoretical interest, the
phenomenological implications of such a determination are discussed.Comment: 20 pages, 6 figure
Second large-scale Monte Carlo study for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) represents the next generation of ground
based instruments for Very High Energy gamma-ray astronomy. It is expected to
improve on the sensitivity of current instruments by an order of magnitude and
provide energy coverage from 20 GeV to more than 200 TeV. In order to achieve
these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding
the design of CTA. Here, results of the second large-scale MC production are
reported, providing a realistic estimation of feasible array candidates for
both Northern and Sourthern Hemisphere sites performance, placing CTA
capabilities into the context of the current generation of High Energy
-ray detectors.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
- …