4 research outputs found
Integrating habitat- and species-based perspectives for wetland conservation in lowland agricultural landscapes
Wetlands are among the most endangered ecosystems worldwide with multiple direct
and indirect stressors, especially in human-altered areas like intensive agricultural landscapes. Conservation management and eforts often focus on species diversity and charismatic taxa, but scarcely consider habitats. By focusing on a complex formed by 107 permanent wetlands at 18 Natura 2000 sites in the Emilia-Romagna region (northern Italy),
the patterns of habitats of conservation concern were investigated and the concordance
with threatened species patterns was analysed. Wetlands were characterised in terms of
morphology, connectivity, land use and management as drivers of assemblage and richness patterns of habitats. Our results showed a strong concordance between the distribution
and richness patterns of both habitats and threatened taxa (birds, mammals, amphibians,
reptiles, fsh, invertebrates, and plants). Thus, habitats seem an efective proxy of species
patterns. The variables related with perimeter, environmental heterogeneity and presence
of water bodies were the most important ones associated with habitat richness patterns.
The presence of aquatic systems (measured as the percentage of wetland area occupied by
an aquatic surface) and their position in the hydrographic network were associated mostly
with habitats distribution. Low richness wetlands (in habitat terms) were not complementary as no new habitat types were supported. The results stressed the relevance of wetlands
with wide water body perimeters composed of diverse systems as being key for biodiversity conservation in a simplifed agricultural matrix. Integrating habitat- and species-based
perspectives seems a promising feld and may provide a rapid assessment tool to acquire
efective information for wetlands conservation and assessment
Supplementary Information Files for 'Integrating habitat- and species-based perspectives for wetland conservation in lowland agricultural landscapes'
Three figures and a pdf document of supplementary information for the article 'Integrating habitat- and species-based perspectives for wetland conservation in lowland agricultural landscapes'Abstract:Wetlands are among the most endangered ecosystems worldwide with multiple direct and indirect stressors, especially in human-altered areas like intensive agricultural landscapes. Conservation management and efforts often focus on species diversity and charismatic taxa, but scarcely consider habitats. By focusing on a complex formed by 107 permanent wetlands at 18 Natura 2000 sites in the Emilia-Romagna region (northern Italy), the patterns of habitats of conservation concern were investigated and the concordance with threatened species patterns was analysed. Wetlands were characterised in terms of morphology, connectivity, land use and management as drivers of assemblage and richness patterns of habitats. Our results showed a strong concordance between the distribution and richness patterns of both habitats and threatened taxa (birds, mammals, amphibians, reptiles, fish, invertebrates, and plants). Thus, habitats seem an effective proxy of species patterns. The variables related with perimeter, environmental heterogeneity and presence of water bodies were the most important ones associated with habitat richness patterns. The presence of aquatic systems (measured as the percentage of wetland area occupied by an aquatic surface) and their position in the hydrographic network were associated mostly with habitats distribution. Low richness wetlands (in habitat terms) were not complementary as no new habitat types were supported. The results stressed the relevance of wetlands with wide water body perimeters composed of diverse systems as being key for biodiversity conservation in a simplified agricultural matrix. Integrating habitat- and species-based perspectives seems a promising field and may provide a rapid assessment tool to acquire effective information for wetlands conservation and assessment.</div
Using invertebrate functional traits to improve flow variability assessment within European rivers
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales
Supplementary information files for Using invertebrate functional traits to improve flow variability assessment within European rivers
Supplementary files for article Using invertebrate functional traits to improve flow variability assessment within European rivers.
Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.</p