182 research outputs found
T cell receptor variable β20-1 harbors a nucleotide binding pocket in the CDR2β loop.
Novel aspects of T cells containing TCRVβ20-1 are numerous, ranging from pathogen specific reactivity to specific tissue homing, or possible T cell subsets. Recently, it was demonstrated that TCR itself could become reactive by binding to small molecules free of the pHLA interface. Our work here was to identify a natural ligand binding to an identified pocket on the CDR2β loop of these TCR. Using docking of suspected ligands, we were able to show Guanine and Adenine di- and tri-nucleotides readily bind to the identified site. Comparing these with small molecule sites found on other TCR types, we show this interaction is novel. With further molecular dynamic simulations, these sites are shown to be plausible by conducting simple computational based solubility tests as cross validation. Combined with simple proliferative responses, the identified nucleotides are also shown to have functional consequences by inducing T cell proliferation for CD4/Vβ20-1 + T cells, while failing to induce proliferation in other T cell isolates. Merging computational and simple cell assays, this work establishes a role of nucleotides in T cells found to contain this TCR sub-type
Characterization of the coating and tablet core roughness by means of 3D optical coherence tomography
This study demonstrates the use of optical coherence tomography (OCT) to simultaneously characterize the roughness of the tablet core and coating of pharmaceutical tablets. OCT is a high resolution non-destructive and contactless imaging methodology to characterize structural properties of solid dosage forms. Besides measuring the coating thickness, it also facilitates the analysis of the tablet core and coating roughness. An automated data evaluation algorithm extracts information about coating thickness, as well as tablet core and coating roughness. Samples removed periodically from a pan coating process were investigated, on the basis of thickness and profile maps of the tablet core and coating computed from about 480,000 depth measurements (i.e., 3D data) per sample. This data enables the calculation of the root mean square deviation, the skewness and the kurtosis of the assessed profiles. Analyzing these roughness parameters revealed that, for the given coating formulation, small valleys in the tablet core are filled with coating, whereas coarse features of the tablet core are still visible on the final film-coated tablet. Moreover, the impact of the tablet core roughness on the coating thickness is analyzed by correlating the tablet core profile and the coating thickness map. The presented measurement method and processing could be in the future transferred to in-line OCT measurements, to investigate core and coating roughness during the production of film-coated tablets
Seasonal variations in the diagnosis of testicular germ cell tumors: a national cancer registry study in austria
SIMPLE SUMMARY: Seasonal variations in cancer diagnosis could already be demonstrated in prostate and breast cancer. The reasons for this observed seasonal pattern are still unclear. The health care system or other determinants such as the protective function of vitamin D3 in carcinogenesis could be assumed as one explanation. Testicular germ cell tumors are the most common developed malignancy among young men. The aim of our study was to investigate, for the first time, the seasonal variations in the clinical diagnosis of testicular germ cell tumors. We have been able to confirm that the frequency of monthly newly diagnosed cases of testicular cell tumors in Austria has a strong seasonality, with a significant reduction in the tumor incidence during the summer months and an increase during the winter months. ABSTRACT: We conducted a retrospective National Cancer Registry study in Austria to assess a possible seasonal variation in the clinical diagnosis of testicular germ cell tumors (TGCT). In total, 3615 testicular cancer diagnoses were identified during an 11-year period from 2008 to 2018. Rate ratios for the monthly number of TGCT diagnoses, as well as of seasons and half-years, were assessed using a quasi-Poisson model. We identified, for the first time, a statistically significant seasonal trend (p < 0.001) in the frequency of monthly newly diagnosed cases of TGCT. In detail, clear seasonal variations with a reduction in the tumor incidence during the summer months (Apr–Sep) and an increase during the winter months (Oct–Mar) were observed (p < 0.001). Focusing on seasonality, the incidence during the months of Oct–Dec (p = 0.008) and Jan–Mar (p < 0.001) was significantly higher compared to the months of Jul–Sep, respectively. Regarding histopathological features, there is a predominating incidence in the winter months compared to summer months, mainly concerning pure seminomas (p < 0.001), but not the non-seminoma or mixed TGCT groups. In conclusion, the incidence of TGCT diagnoses in Austria has a strong seasonal pattern, with the highest rate during the winter months. These findings may be explained by a delay of self-referral during the summer months. However, the hypothetical influence of vitamin D3 in testicular carcinogenesis underlying seasonal changes in TGCT diagnosis should be the focus of further research
Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis.
The co-catabolism of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady-state chemostat system. We demonstrate that Mtb efficiently co-metabolises either cholesterol or glycerol, in combination with two-carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt
KCNJ3 is a new independent prognostic marker for estrogen receptor positive breast cancer patients
Numerous studies showed abnormal expression of ion channels in different cancer types. Amongst these, the potassium channel gene KCNJ3 (encoding for GIRK1 proteins) has been reported to be upregulated in tumors of patients with breast cancer and to correlate with positive lymph node status. We aimed to study KCNJ3 levels in different breast cancer subtypes using gene expression data from the TCGA, to validate our findings using RNA in situ hybridization in a validation cohort (GEO ID GSE17705), and to study the prognostic value of KCNJ3 using survival analysis. In a total of > 1000 breast cancer patients of two independent data sets we showed a) that KCNJ3 expression is upregulated in tumor tissue compared to corresponding normal tissue (p < 0.001), b) that KCNJ3 expression is associated with estrogen receptor (ER) positive tumors (p < 0.001), but that KCNJ3 expression is variable within this group, and c) that ER positive patients with high KCNJ3 levels have worse overall (p < 0.05) and disease free survival probabilities (p < 0.01), whereby KCNJ3 is an independent prognostic factor (p <0.05). In conclusion, our data suggest that patients with ER positive breast cancer might be stratified into high risk and low risk groups based on the KCNJ3 levels in the tumor
- …