268 research outputs found

    Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes

    Full text link
    Motivated by pedestrian modelling, we study evolution of measures in the Wasserstein space. In particular, we consider the Cauchy problem for a transport equation, where the velocity field depends on the measure itself. We deal with numerical schemes for this problem and prove convergence of a Lagrangian scheme to the solution, when the discretization parameters approach zero. We also prove convergence of an Eulerian scheme, under more strict hypotheses. Both schemes are discretizations of the push-forward formula defined by the transport equation. As a by-product, we obtain existence and uniqueness of the solution. All the results of convergence are proved with respect to the Wasserstein distance. We also show that L1L^1 spaces are not natural for such equations, since we lose uniqueness of the solution

    Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

    Full text link
    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.Comment: 24 pages, 13 figure

    How can macroscopic models reveal self-organization in traffic flow?

    Full text link
    In this paper we propose a new modeling technique for vehicular traffic flow, designed for capturing at a macroscopic level some effects, due to the microscopic granularity of the flow of cars, which would be lost with a purely continuous approach. The starting point is a multiscale method for pedestrian modeling, recently introduced in Cristiani et al., Multiscale Model. Simul., 2011, in which measure-theoretic tools are used to manage the microscopic and the macroscopic scales under a unique framework. In the resulting coupled model the two scales coexist and share information, in the sense that the same system is simultaneously described from both a discrete (microscopic) and a continuous (macroscopic) perspective. This way it is possible to perform numerical simulations in which the single trajectories and the average density of the moving agents affect each other. Such a method is here revisited in order to deal with multi-population traffic flow on networks. For illustrative purposes, we focus on the simple case of the intersection of two roads. By exploiting one of the main features of the multiscale method, namely its dimension-independence, we treat one-dimensional roads and two-dimensional junctions in a natural way, without referring to classical network theory. Furthermore, thanks to the coupling between the microscopic and the macroscopic scales, we model the continuous flow of cars without losing the right amount of granularity, which characterizes the real physical system and triggers self-organization effects, such as, for example, the oscillatory patterns visible at jammed uncontrolled crossroads.Comment: 7 pages, 7 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Mean-Field Sparse Optimal Control

    Full text link
    We introduce the rigorous limit process connecting finite dimensional sparse optimal control problems with ODE constraints, modeling parsimonious interventions on the dynamics of a moving population divided into leaders and followers, to an infinite dimensional optimal control problem with a constraint given by a system of ODE for the leaders coupled with a PDE of Vlasov-type, governing the dynamics of the probability distribution of the followers. In the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect. In this paper we address instead the situation where the leaders are actually influenced also by an external policy maker, and we propagate its effect for the number NN of followers going to infinity. The technical derivation of the sparse mean-field optimal control is realized by the simultaneous development of the mean-field limit of the equations governing the followers dynamics together with the Γ\Gamma-limit of the finite dimensional sparse optimal control problems.Comment: arXiv admin note: text overlap with arXiv:1306.591
    • …
    corecore