49 research outputs found
The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation
Lamin A is a component of the nuclear matrix that also controls proliferation by
largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation
composed of three subunits (-YA -YB -YC) all required for the DNA binding and
transactivation activity. To get clues on new NF-Y partner(s) we performed a mass
spectrometry screening of proteins that co-precipitate with the regulatory subunit
of the complex, NF-YA. By this screening we identified lamin A as a novel putative
NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed
the interaction between the two endogenous proteins. Interestingly, this association
occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A
enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent
manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y
transcriptional activity. Taking advantage of a recently generated transgenic reporter
mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase
expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity
not only in culture cells but also in living animals. Altogether, our data demonstrate
the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein
complex in regulation of NF-Y function in cell proliferatio
Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits
Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A- and B-type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof ) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof ; p53ko/ko and Ft1kof/kof ; p53+/ko ) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53-dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model
Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters
IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20
Real-Time Motion Planning in Autonomous Vehicles: A Hybrid Approach
In this paper a multi-agent architecture of an Autonomous Robot Navigator for a vehicle that operates in dynamic real-world environments is presented. The vehicle is capable of executing different navigation missions while smoothly avoiding static obstacles in its path as well as moving objects. The navigator architecture is part of a general multi-agent cognitive framework, which is organised into three non-hierarchical components characterised by the type of knowledge they deal with: a symbolic component, handling a declarative explicit propositional formalism, a diagrammatic component, dealing with analogical, iconic representations, and a reactive behaviour based component. The navigator is distributed in all three components combining motion planning on a topological graph with reactive motion planning techniques. It is on these aspects that the paper focuses. Experimental results with our mobile robot will also be provided
AI-CART: An Algorithm to Incrementally Calculate Artificial potential fields in Real-Time
Potential fields have been widely used for mobile robot navigation and obstacle avoidance. Their success is due to two main reasons: the simplicity with which a path planning problem can be represented and solved and, most of all, the computational efficiency that allows its real-time applicability. In this paper we analyze the complexity of calculating the artificial potential field and propose a novel algorithm that statistically reduces i
Autonomous Navigation Based on a Dynamic World Representation
In this paper we propose a real-time architecture for autonomous mobile robots. We describe the single components of the architecture that are responsible of data acquisition and representation, navigation and obstacle avoidance. In particular we will focus on the integration of the components in the architecture and on the mechanisms that allow the system to operate in real time. Some experimental results will be illustrated