315 research outputs found
1977: Abilene Christian College Bible Lectures - Full Text
Seeking The Lost
Being the Abilene Christian University Annual Bible Lectures 1977
Published by
ABILENE CHRISTIAN UNIVERSITY Book Store
ACU Station Abilene, Texas 7960
The Full-sky Astrometric Mapping Explorer -- Astrometry for the New Millennium
FAME is designed to perform an all-sky, astrometric survey with unprecedented
accuracy. It will create a rigid astrometric catalog of 4x10^7 stars with 5 <
m_V < 15. For bright stars, 5 < m_V < 9, FAME will determine positions and
parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50
microarcseconds/year. For fainter stars, 9 < m_V < 15, FAME will determine
positions and parallaxes accurate to < 500 microarcseconds, with proper motion
errors < 500 microarcseconds/year. It will also collect photometric data on
these 4 x 10^7 stars in four Sloan DSS colors.Comment: 6 pages, 4 figures, to appear in "Working on the Fringe
1987: Abilene Christian College Bible Lectures - Full Text
THE MIND OF CHRIST
Being the Abilene Christian University Annual Bible Lectures 1987
Published by A.C.U. Press
1634 Campus Court Abilene, Texas 7960
A measurement and modelling investigation of the indoor air chemistry following cooking activities
Domestic cooking is a source of indoor air pollutants, including volatile organic compounds (VOCs), which can impact on indoor air quality. However, the real-time VOC emissions from cooking are not well characterised, and similarly, the resulting secondary chemistry is poorly understood. Here, selected-ion flow-tube mass spectrometry (SIFT-MS) was used to monitor the real-time VOC emissions during the cooking of a scripted chicken and vegetable stir-fry meal, in a room scale, semi-realistic environment. The VOC emissions were dominated by alcohols (70% of total emission), but also contained a range of aldehydes (14%) and terpenes (5%), largely attributable to the heating of oil and the preparation and heating of spices, respectively. The direct cooking-related VOC emissions were then simulated using the Indoor Chemical Model in Python (INCHEM-Py), to investigate the resulting secondary chemistry. Modelling revealed that VOC concentrations were dominated by direct emissions, with only a small contribution from secondary products, though the secondary species were longer lived than the directly emitted species. Following cooking, hydroxyl radical concentrations reduced by 86%, while organic peroxy radical levels increased by over 700%, later forming secondary organic nitrates, peroxyacylnitrates (PANs) and formaldehyde. Monoterpene emissions were shown to drive the formation of secondary formaldehyde, albeit to produce relatively modest concentrations (average of 60 ppt). Sensitivity analysis of the simulation conditions revealed that increasing the outdoor concentrations of ozone and NOx species (2.9× and 9×, respectively) resulted in the greatest increase in secondary product formation indoors (≈400%, 200% and 600% increase in organic nitrates, PANs and formaldehyde production, respectively). Given the fact that climate change is likely to result in increased ozone concentrations in the future, and that increased window-opening in response to rising temperatures is also likely, higher concentrations of indoor oxidants are likely in homes in the future. This work, therefore, suggests that cooking could be a more important source of secondary pollutants indoors in the future
Solar heating for swine buildings
1 online resource (PDF, 7 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu
2 X 20: Works by 20 of Kentucky\u27s Finest Working Folk Artists
2012 Kentucky Folk Art Center exhibition catalog of the twenty finest working folk artists.https://scholarworks.moreheadstate.edu/kfac_exhibition_catalogs/1009/thumbnail.jp
- …