14 research outputs found

    Additional file 2: of A genome-wide association study identifies candidate loci associated to syringomyelia secondary to Chiari-like malformation in Cavalier King Charles Spaniels

    No full text
    Table S2. SNPs suggestive of association to SM in the CKCS breed. This table enlists all SNPs suggestive of association with FDR corrected scores between 0.05 and 0.1. These SNPs were identified following a GWAS using a mixed linear model with age as a covariate on the previously identified traits (Line AE, line AI, angle 3, angle 7, ratio F-d/BC and L4 + L7). (DOCX 15 kb

    Quantitative Trait Loci (QTL) Study Identifies Novel Genomic Regions Associated to Chiari-Like Malformation in Griffon Bruxellois Dogs

    No full text
    <div><p>Chiari-like malformation (CM) is a developmental abnormality of the craniocervical junction that is common in the Griffon Bruxellois (GB) breed with an estimated prevalence of 65%. This disease is characterized by overcrowding of the neural parenchyma at the craniocervical junction and disturbance of cerebrospinal fluid (CSF) flow. The most common clinical sign is pain either as a direct consequence of CM or neuropathic pain as a consequence of secondary syringomyelia. The etiology of CM remains unknown but genetic factors play an important role. To investigate the genetic complexity of the disease, a quantitative trait locus (QTL) approach was adopted. A total of 14 quantitative skull and atlas measurements were taken and were tested for association to CM. Six traits were found to be associated to CM and were subjected to a whole-genome association study using the Illumina canine high density bead chip in 74 GB dogs (50 affected and 24 controls). Linear and mixed regression analyses identified associated single nucleotide polymorphisms (SNPs) on 5 Canis Familiaris Autosomes (CFAs): CFA2, CFA9, CFA12, CFA14 and CFA24. A reconstructed haplotype of 0.53 Mb on CFA2 strongly associated to the height of the cranial fossa (diameter F) and an haplotype of 2.5 Mb on CFA14 associated to both the height of the rostral part of the caudal cranial fossa (AE) and the height of the brain (FG) were significantly associated to CM after 10 000 permutations strengthening their candidacy for this disease (<i>P = </i>0.0421, <i>P</i> = 0.0094 respectively). The CFA2 QTL harbours the <i>Sall-1</i> gene which is an excellent candidate since its orthologue in humans is mutated in Townes-Brocks syndrome which has previously been associated to Chiari malformation I. Our study demonstrates the implication of multiple traits in the etiology of CM and has successfully identified two new QTL associated to CM and a potential candidate gene.</p></div

    Manhattan plot of the significant QTL obtained by linear or mixed regression models.

    No full text
    <p>Manhattan plot of the 2 significant QTL obtained by the linear model in traits length BC (panel A) and Diameter F (panel B) and the 4 traits containing the 3 associated regions in the mixed linear model for traits length AE (panel C), Angle 5 (panel D), Diameter F (panel E) and length FG (panel F).</p

    Morphometric measurements of a Griffon Bruxellois skull.

    No full text
    <p>Measurements were chosen to maximize coverage of the possible variation associated with CM. All measurements start from one of those 9 points :(A) the dorsum of sphenoid-occipital synchondrosis, (B) the basion of basioccipital bone, (C) the rostral edge of the dorsal lamina of the atlas, (D) the junction between the supraoccipital bone and the occipital crest, (E) the most dorsal point of intersection of the cerebellum with the occipital lobe circle, (F) the center of occipital lobe circle, (G) the optic nerve, (H) the most caudal point of the olfactory bulb and (I) the intersection point with the HA baseline.</p
    corecore