14,329 research outputs found
Stellar and nuclear-physics constraints on two r-process components in the early Galaxy
Proceedings of "Nuclei in the Cosmos 2000", Aarhus, DanmarkComment: 3 pages, 2 figures; to be publ. in Nucl. Phys.
Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field
We report the first experimental observation of a characteristic nonlinear
threshold behavior from dc dynamical response as an evidence for a Wigner
crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The
system under increasing current drive exhibits voltage oscillations with
negative differential resistance. They confirm the coexistence of a moving
crystal along with striped edge states as observed for electrons on helium
surfaces. However, the threshold is well below the typical classical levels due
to a different pinning and depinning mechanism that is possibly related to a
quantum process
ECONOMICS OF WATER QUALITY IMPROVEMENT IN AN IRRIGATED RIVER BASIN
Resource /Energy Economics and Policy,
Nuclear Structure Studies at ISOLDE and their Impact on the Astrophysical r-Process
The focus of the present review is the production of the heaviest elements in
nature via the r-process. A correct understanding and modeling requires the
knowledge of nuclear properties far from stability and a detailed prescription
of the astrophysical environment. Experiments at CERN/ISOLDE have played a
pioneering role in exploring the characteristics of nuclear structure in terms
of masses and beta-decay properties. Initial examinations paid attention to far
unstable nuclei with magic neutron numbers related to r-process peaks, while
present activities are centered on the evolution of shell effects with the
distance from the valley of stability. We first show in site-independent
applications the effect of both types of nuclear properties on r-process
abundances. Then, we explore the results of calculations related to two
different `realistic' astrophysical sites, (i) the supernova neutrino wind and
(ii) neutron star mergers. We close with a list of remaining theoretical and
experimental challenges needed to overcome for a full understanding of the
nature of the r-process, and the role CERN/ISOLDE can play in this process.Comment: LATEX, 38 pages, 16 figures, submitted to Hyperfine Interaction
Metastable Resistance Anisotropy Orientation of Two-Dimensional Electrons in High Landau Levels
In half-filled high Landau levels, two-dimensional electron systems possess
collective phases which exhibit a strongly anisotropic resistivity tensor. A
weak, but as yet unknown, rotational symmetry-breaking potential native to the
host semiconductor structure is necessary to orient these phases in macroscopic
samples. Making use of the known external symmetry-breaking effect of an
in-plane magnetic field, we find that the native potential can have two
orthogonal local minima. It is possible to initialize the system in the higher
minimum and then observe its relaxation toward equilibrium.Comment: 5 pages, 3 figures. Figure references corrected. Version accepted for
publication in Physical Review Letter
Field-induced resonant tunneling between parallel two-dimensional electron systems
Resonant tunneling between two high-mobility two-dimensional (2D) electron systems in a double quantum well structure has been induced by the action of an external Schottky gate field. Using one 2D electron gas as source and the other as drain, the tunnel conductance between them shows a strong resonance when the gate field aligns the ground subband edges of the two quantum wells
- …