8 research outputs found

    Near-IR mode-locked laser assisted sintering and morphological engineering of biomaterials - A new approach for integrative manufacturing of hard-soft tissues for in-theatre use!

    No full text
    The emergence of mode-locked near-IR (NIR) lasers has opened novel and exciting opportunities in dental and orthopaedic medicine. In a mode-locked laser cavity the pulse duration and repetition rates may be controlled between 10-100s of femtosecond (fs) and kHz-GHz ranges, respectively. This unique capability for controlling the incident laser power in a near-IR mode-locked laser has been explored for studying the materials phase transformation, sintering and bonding mechanisms in calcium phosphate and chitosan/calcium phosphate suspensions as biomaterials. The investigation primarily focusses on interaction of such a laser in a linear regime, resulting in a plethora of phase combinations and morphologically controlled structures, which are well suited for in-theatre processing of hard-soft tissues for personalized therapy. In this article, the engineered medical device which combines the materials and laser power delivery at the point of tissue restoration is also discussed. The article exemplifies the case for enamel restoration using such a medical device, which then sets the scene for much wider use in tissue engineering

    Anthocyanins enhance yeast’s adsorption of Ochratoxin A during the alcoholic fermentation

    No full text
    Ochratoxin A (OTA) is a mycotoxin that can be present in food products and beverages such as wine, in which the European Union has regulated its maximum concentration. Since yeasts can adsorb OTA during the alcoholic fermentation (AF), we have analyzed whether anthocyanins influence the reduction of OTA in wine during AF carried out by two Saccharomyces cerevisiae strains. Laboratory experiments were conducted with one white must and two red musts that were obtained by adding to the white must two different concentrations of anthocyanins extract. Musts were supplemented with OTA and tested at two pHs. A reduction of OTA was observed in all wines, being higher in red wines. These data point that a chemical bond between anthocyanins and OTA is probably responsible for enhanced adsorption of OTA by yeast. On the other hand, the removal of OTA between the two inoculated yeast strains was different. This result cannot be only attributed to differences in the yeasts’ cell wall composition, because differences were not detected in white wines
    corecore