48 research outputs found

    Radical scavenging activity of Chlorophytum borivilianum L. root extract and its protective role in cauda epididymal sperm integrity in Mus musculus after gamma irradiation

    Get PDF
    Background:Chlorophytumborivilianum L. is a recognized herbal medicine for the management of impotency in South Asian countries. In Ayurveda, it is used for the management of multiple health conditions, including diabetes, infection, and cardiovascular diseases. Parts of the plant have been used as excellent antioxidants and scavengers of free radicals. Since oxidative stress plays an important role in spermatogenesis and fertility in male populations, this study evaluated the role of ethanolic extract of C. borivilianum roots in epididymal sperm maturation against adversities posed by ionizing gamma irradiation.Materials and methods: Antioxidant potential of C. borivilianum root extract (CRE) was evaluated through DPPH (2,2-diphenylpicrylhydrazyl) and NO (nitric oxide) scavenging assays. Four groups of healthy Swiss albino mice were constituted, which were labeled as follows: Group I: sham control, Group II: 7-day pre-treatment with 50 mg/kg CRE, Group III: 6 Gy irradiation without pre-treatment, and Group IV: 7-day pre-treatment with 50 mg/kg CRE and 6 Gy irradiation on day 7. Swiss albino mice were observed for 30 days and later sacrificed to evaluate sperm quality parameters.Results: CRE showed a remarkable antioxidant potential with IC50 values of 46.37 μg/ml and 98.39 μg/ml for DPPH and NO, respectively. A significant decline (p < 0.001) in cauda epididymal sperm count, motility, and viability was observed in Group III animals. Group IV also showed a substantial decline (p < 0.01) in all three parameters compared to Group I; nonetheless, these were significantly higher than Group III. Morphological alterations indicated a coiled and bent tail, with the presence of cytoplasmic droplets in Group III, which declined substantially in Group IV. The ultrastructure of sperm indicated higher curvature of hook in Group III than Group IV, indicating specific interferences in the sperm maturation process.Conclusion: It was concluded that pre-treatment with 50 mg/kg body weight of CRE could protect sperm during epididymal maturation against oxidative stress

    Effect of fungicidal treatment and storage condition on content of selected mycotoxins in barley

    Get PDF
    The aim of the study was to determine the effect of fungicidal treatment and storage on the occurrence of mycotoxins in barley (Hordeum vulgare L.). Barley was initially inoculated with Fusarium culmorum followed by the application of fungicides (prothioconazole and bixafen). A screening of 57 mycotoxins were performed using ultra-performance liquid chromatography in tandem with mass spectrometry. The fungicide treatment affected (P <0.05) the levels of zearalenone, β-zearalenol, arternariol and alternariol-methylether that were present. Levels of deoxynivalenol was highest in the second year of monitoring. 3-acetyl-deoxynivalenol was not affected by fungicidal treatment or storage. The significant increase (P <0.05) of DON-3-glucoside, 15-acetyl-DON, enniatin A, enniatin A1, enniatin B, and enniatin B1 was measured in barley samples. The results of the experiment determined that the use of fungicides can suppress some kinds of mycotoxins, but not others

    Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation

    Get PDF
    Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into “nano-biochar” by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns

    Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies

    Get PDF
    The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article

    Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis

    Get PDF
    Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis

    Effect of Streptococcus uberis on Gamma Delta T Cell Phenotype in Bovine Mammary Gland

    No full text
    In this study, we focused analyzing &gamma;&delta; T cells during bovine mammary gland inflammation induced by Streptococcus uberis. A mammary gland cell suspension was obtained using lavage 24, 48, 72, and 168 h after intramammary-induced infection. The proportion of lymphocytes increased during the entire week in which inflammation was present. The &gamma;&delta; T cells were also elevated during inflammation, reaching their peak at 72 h following induced inflammation. The percentage of apoptotic lymphocytes continually increased, with the highest proportion occurring 168 h after S. uberis infection. The results show that &gamma;&delta; T cells may be involved in the resolution of inflammation in bovine mammary glands, with the apoptosis of those cells potentially playing an important role

    Valve seat angle influence on losses in valves for steam turbines

    No full text
    Losses in valve assemblies have a significant influence on turbines´ efficiency. Therefore, performing pressure loss analysis to enhance the valve design has always been one of the traditional issues. Valves can differ in many ways in terms of their design. This paper aims to show the influence of the valve seat angle, which is one of the characteristic design dimensions. In order to achieve this, different results from a wide range of measurements on two different models are used. Regarding the first model with a 60° valve seat angle, the measurement was performed in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences. The measurement of the second model with a 90° valve seat angle was performed in the Doosan Skoda Power experimental lab. Differences are described in the form of a total loss coefficient and a flow contraction coefficient. The results are complemented by flow fields from numerical simulations performed on both valve models using a package of ANSYS software tools

    Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction

    No full text
    Inflammation is among the core causatives of male infertility. Despite male infertility being a serious global issue, “bits and pieces” of its complex etiopathology still remain missing. During inflammation, levels of proinflammatory mediators in the male reproductive tract are greater than usual. According to epidemiological research, in numerous cases of male infertility, patients suffer from acute or chronic inflammation of the genitourinary tract which typically occurs without symptoms. Inflammatory responses in the male genital system are inextricably linked to oxidative stress (OS). OS is detrimental to male fertility parameters as it causes oxidative damage to reproductive cells and intracellular components. Multifarious male infertility causative factors pave the way for impairing male reproductive functions via the common mechanisms of OS and inflammation, both of which are interlinked pathophysiological processes, and the occurrence of any one of them induces the other. Both processes may be simultaneously found in the pathogenesis of male infertility. Thus, the present article aims to explain the role of inflammation and OS in male infertility in detail, as well as to show the mechanistic pathways that link causative factors of male reproductive tract inflammation, OS induction, and oxidant-sensitive cellular cascades leading to male infertility

    Reactive Nitrogen Species and Male Reproduction: Physiological and Pathological Aspects

    Get PDF
    Reactive nitrogen species (RNS), like reactive oxygen species (ROS), are useful for sustaining reproductive processes such as cell signaling, the regulation of hormonal biosynthesis, sperm capacitation, hyperactivation, and acrosome reaction. However, endogenous levels of RNS beyond physiological limits can impair fertility by disrupting testicular functions, reducing gonadotropin production, and compromising semen quality. Excessive RNS levels cause a variety of abnormalities in germ cells and gametes, particularly in the membranes and deoxyribonucleic acid (DNA), and severely impair the maturation and fertilization processes. Cell fragmentation and developmental blockage, usually at the two-cell stage, are also connected with imbalanced redox status of the embryo during its early developmental stage. Since high RNS levels are closely linked to male infertility and conventional semen analyses are not reliable predictors of the assisted reproductive technology (ART) outcomes for such infertility cases, it is critical to develop novel ways of assessing and treating oxidative and/or nitrosative stress-mediated male infertility. This review aims to explicate the physiological and pathological roles of RNS and their relationship with male reproduction
    corecore