151 research outputs found

    Difficulties in establishing a timely diagnosis of pulmonary artery sarcoma misdiagnosed as chronic thrombo-embolic pulmonary disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pulmonary artery sarcomas are rare neoplasms that are often confused with chronic thrombo-embolic disease, as both can have similar clinical and imaging presentation.</p> <p>Case presentation</p> <p>In this report, we present a case of a 50-year-old man initially diagnosed with chronic thrombo-embolic pulmonary disease, but who was later found to have pulmonary artery sarcoma with poor survival prognosis. We review the clinical and imaging characteristics of the two diseases and discuss the difficulties in establishing a timely diagnosis.</p> <p>Conclusion</p> <p>Similar clinical features and imaging presentation of pulmonary artery sarcoma and chronic thrombo-embolic pulmonary disease make definitive diagnosis difficult. This case report also illustrates and emphasizes that in any case with no predisposition factors for embolism, no evidence of deep venous thrombosis and pulmonary emboli, and inadequate relief of symptoms with anticoagulation, an alternative diagnosis of pulmonary artery sarcoma should be considered. If pulmonary artery sarcoma is diagnosed late in the course of the disease, there is usually a poor survival outcome.</p

    From law to student

    No full text

    New records for the bryophyte flora of Serbia

    No full text

    Cavitation microstreaming and stress fields created by microbubbles

    No full text
    Cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonoporative and sonothrombolytic phenomena. Microscopic particle-image velocimetry experiments are presented. Results show that many different microstreaming patterns are possible around a microbubble when it is on a surface, albeit for microbubbles much larger than used in clinical practice. Each pattern is associated with a particular oscillation mode of the bubble, and changing between patterns is achieved by changing the sound frequency. Each microstreaming pattern also generates different shear stress and stretch/compression distributions in the vicinity of a bubble on a wall. Analysis of the micro-PIV results also shows that ultrasound-driven microstreaming flows around bubbles are feasible mechanisms for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Patterns show significant variations around the bubble, suggesting sonoporation may be either enhanced or inhibited in different zones across a cellular surface. Thus, alternating the patterns may result in improved sonoporation and sonothrombolysis. The clear and reproducible delineation of microstreaming patterns based on driving frequency makes frequency-based pattern alternation a feasible alternative to the clinically less desirable practice of increasing sound pressure for equivalent sonoporative or sonothrombolytic effect. Surface divergence is proposed as a measure relevant to sonoporation
    corecore