11 research outputs found

    Smoothed Embeddings for Certified Few-Shot Learning

    Full text link
    Randomized smoothing is considered to be the state-of-the-art provable defense against adversarial perturbations. However, it heavily exploits the fact that classifiers map input objects to class probabilities and do not focus on the ones that learn a metric space in which classification is performed by computing distances to embeddings of classes prototypes. In this work, we extend randomized smoothing to few-shot learning models that map inputs to normalized embeddings. We provide analysis of Lipschitz continuity of such models and derive robustness certificate against â„“2\ell_2-bounded perturbations that may be useful in few-shot learning scenarios. Our theoretical results are confirmed by experiments on different datasets

    Real-world adversarial attack on MTCNN face detection system

    Full text link
    Recent studies proved that deep learning approaches achieve remarkable results on face detection task. On the other hand, the advances gave rise to a new problem associated with the security of the deep convolutional neural network models unveiling potential risks of DCNNs based applications. Even minor input changes in the digital domain can result in the network being fooled. It was shown then that some deep learning-based face detectors are prone to adversarial attacks not only in a digital domain but also in the real world. In the paper, we investigate the security of the well-known cascade CNN face detection system - MTCNN and introduce an easily reproducible and a robust way to attack it. We propose different face attributes printed on an ordinary white and black printer and attached either to the medical face mask or to the face directly. Our approach is capable of breaking the MTCNN detector in a real-world scenario

    Nonparametric Uncertainty Quantification for Single Deterministic Neural Network

    Full text link
    This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the proposed approach allows to disentangle explicitly aleatoric and epistemic uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on text classification problems and a variety of real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.Comment: NeurIPS 2022 pape

    Many Heads but One Brain: Fusion Brain -- a Competition and a Single Multimodal Multitask Architecture

    Full text link
    Supporting the current trend in the AI community, we present the AI Journey 2021 Challenge called Fusion Brain, the first competition which is targeted to make the universal architecture which could process different modalities (in this case, images, texts, and code) and solve multiple tasks for vision and language. The Fusion Brain Challenge combines the following specific tasks: Code2code Translation, Handwritten Text recognition, Zero-shot Object Detection, and Visual Question Answering. We have created datasets for each task to test the participants' submissions on it. Moreover, we have collected and made publicly available a new handwritten dataset in both English and Russian, which consists of 94,128 pairs of images and texts. We also propose a multimodal and multitask architecture - a baseline solution, in the center of which is a frozen foundation model and which has been trained in Fusion mode along with Single-task mode. The proposed Fusion approach proves to be competitive and more energy-efficient compared to the task-specific one
    corecore