13,813 research outputs found

    Bayesian least squares deconvolution

    Full text link
    Aims. To develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods. We consider LSD under the Bayesian framework and we introduce a flexible Gaussian Process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results. We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.Comment: 8 pages, accepted for publication in A&

    Frequency stability of maser oscillators operated with cavity Q

    Get PDF
    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered

    Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering

    Get PDF
    The process of gravitational scattering of planetesimals by a massive protoplanetary embryo is explored theoretically. We propose a method to describe the evolution of the disk surface density, eccentricity, and inclination caused by the embryo-planetesimal interaction. It relies on the analytical treatment of the scattering in two extreme regimes of the planetesimal epicyclic velocities: shear-dominated (dynamically ``cold'') and dispersion-dominated (dynamically ``hot''). In the former, planetesimal scattering can be treated as a deterministic process. In the latter, scattering is mostly weak because of the large relative velocities of interacting bodies. This allows one to use the Fokker-Planck approximation and the two-body approximation to explore the disk evolution. We compare the results obtained by this method with the outcomes of the direct numerical integrations of planetesimal orbits and they agree quite well. In the intermediate velocity regime an approximate treatment of the disk evolution is proposed based on interpolation between the two extreme regimes. We also calculate the rate of embryo's mass growth in an inhomogeneous planetesimal disk and demonstrate that it is in agreement with both the simulations and earlier calculations. Finally we discuss the question of the direction of the embryo-planetesimal interaction in the dispersion-dominated regime and demonstrate that it is repulsive. This means that the embryo always forms a gap in the disk around it, which is in contrast with the results of other authors. The machinery developed here will be applied to realistic protoplanetary systems in future papers.Comment: 40 pages, 9 figures, submitted to A

    Generalized Miller Formulae

    Full text link
    We derive the spectral dependence of the non-linear susceptibility of any order, generalizing the common form of Sellmeier equations. This dependence is fully defined by the knowledge of the linear dispersion of the medium. This finding generalizes the Miller formula to any order of non-linearity. In the frequency-degenerate case, it yields the spectral dependence of non-linear refractive indices of arbitrary order.Comment: 12 pages, 1 figure (4 panels

    Temporal fluctuations in the differential rotation of cool active stars

    Full text link
    This paper reports positive detections of surface differential rotation on two rapidly rotating cool stars at several epochs, by using stellar surface features (both cool spots and magnetic regions) as tracers of the large scale latitudinal shear that distorts the convective envelope in this type of stars. We also report definite evidence that this differential rotation is different when estimated from cool spots or magnetic regions, and that it undergoes temporal fluctuations of potentially large amplitude on a time scale of a few years. We consider these results as further evidence that the dynamo processes operating in these stars are distributed throughout the convective zone rather than being confined at its base as in the Sun. By comparing our observations with two very simple models of the differential rotation within the convective zone, we obtain evidence that the internal rotation velocity field of the stars we investigated is not like that of the Sun, and may resemble that we expect for rapid rotators. We speculate that the changes in differential rotation result from the dynamo processes (and from the underlying magnetic cycle) that periodically converts magnetic energy into kinetic energy and vice versa. We emphasise that the technique outlined in this paper corresponds to the first practical method for investigating the large scale rotation velocity field within convective zones of cool active stars, and offers several advantages over asteroseismology for this particular purpose and this specific stellar class.Comment: 14 pages, 4 figure
    corecore