22 research outputs found

    Absolute beam position monitoring using HOM-damper signals

    Get PDF
    To preserve the required beam quality in an e+/e- collider it is necessary to have a very precise beam position control at each accelerating cavity. An elegant method to avoid additional length and beam disturbance is the usage of signals from existing HOM-dampers. The magnitude of the displacement is derived from the amplitude of a dipole mode whereas the sign follows from the phase comparison of a dipole and a monopole HOM. To check the performance of the system, a measurement setup has been built with an antenna which can be moved with micrometer resolution to simulate the beam. Furthermore we have developed a signal processing to determine the absolute beam displacement. Measurements on the HOM-damper cell can be done in the frequency domain using a network analyser. Final measurements with the nonlinear time dependent signal processing circuit has to be done with very short electric pulses simulating electron bunches. Thus, we have designed a sub nanosecond pulse generator using a clipping line and the step recovery effect of a diode. The measurement can be done with a resolution of about 10 micrometers. Measurements and numerical calculations concerning the monitor design and the pulse generator are presented

    The influence of wakefields on superconducting TESLA-cavities in FEL-operation

    Get PDF
    Due to the additional need of very short bunches for the FEL operation with the TESLA-machine strong wakefield effects are expected. One third of the total wakefield energy per bunch is radiated into the frequency region above the energy gap of Cooper pairs in superconducting niobium. The energy of the cooper pairs in superconducting niobium at 2 K corresponds to a frequency of 700 GHz. An analytical and experimental estimation for the overall energy loss of the FEL bunch above energy gap is presented. The analytical method is based on a study from R. B. Palmer [1]. The results of the wakefield estimations are used to calculate possible quality factor reduction of the TESLA cavities during FEL operation. Results are presented

    Messungen und Berechnungen zu longitudinalen und transversalen Shuntimpedanzen einer Elektronen-Positronen-Linearbeschleuniger-Struktur

    Get PDF
    Mikrowellen-Linearbeschleuniger arbeiten im allgemeinen mit einer geringen Stoßfrequenz. Um dennoch eine gute Luminosität zu erreichen, ist es erforderlich, eine große Teilchenzahl pro Bunch und einen sehr kleinen Strahlquerschnitt am Kollisionspunkt zu erreichen. Vor dem Hauptbeschleuniger sorgen entsprechende Quellen und die Dämpfungsringe für eine geringe Emittanz. Im Idealfall werden die Teilchenpakete vom Hauptbeschleuniger ausschließlich longitudinal beschleunigt. Bedingt durch höhere Moden kann es hier jedoch zum BBU (siehe Abschnitt 1.2) mit einer Verschlechterung der Strahlqualität oder gar Strahlverlust kommen. Dieser Effekt wird umso stärker, je größer die Teilchenzahl pro Bunch ist. Um den Einsatzpunkt für den BBU quantitativ zu bestimmen, ist es erforderlich, die Shuntimpedanzen der Störmoden zu kennen [1, 2]. Ziel dieser Arbeit war es, die Shuntimpedanzen aller Moden der ersten drei Pass-Bänder zu bestimmen. Hierzu wurde ein weitgehend automatisierter Störkörper-Meßstand mit zugehöriger Schrittmotorsteuerung und Steuerprogramm aufgebaut, der es ermöglicht, eine große Zahl von Meßpunkten aufzunehmen und so die statistischen Fehler klein zu halten. Die Messungen der Monopol-Moden wurde nicht-resonant in Transmission durchgeführt. Die Messungen der Dipol-Moden erfolgten mit der nicht-resonanten zwei-Störkörper-Methode in Transmission. Diese Methode macht Störkörpermessungen auch an Moden möglich, die ein überwiegend transversales elektrisches Feld haben. Aus den Meßdaten wurden die Gütefaktoren und Shuntimpedanzen ohne Phasenfaktor sowie nach Rekonstruktion der Phasensprünge die Shuntimpedanzen mit Phasenfaktor und die Transittime-Faktoren berechnet. Hierzu wurde ein Satz von Auswertungs-Programmen geschrieben. Parallel zu den Messungen wurden alle gesuchten Größen auch numerisch mit dem Programm MAFIA berechnet. Bei den Monopol-Moden zeigte sich eine gute Übereinstimmung zwischen Messung und numerischer Rechnung bei den Gütefaktoren und den longitudinalen Shuntimpedanzen ohne Phasenfaktor. Die Bestimmung der longitudinalen Shuntimpedanzen mit Phasenfaktor durch Rekonstruktion der Phasensprünge funktioniert bei großen Transittime- Faktoren gut. Bei sehr kleinen Transittime-Faktoren ist mit diesem Verfahren nur noch die Aussage möglich, daß die longitudinalen Shuntimpedanzen mit Phasenfaktor bzw. der Transittime-Faktor klein sind. Die genauen Werte hängen stark von kleinen Fehlern sowohl bei der Messung als auch in der Geometrie der Cavity ab. Moden mit sehr kleinem Transittime-Faktor beeinflussen den Strahl jedoch nicht wesentlich, so daß diese qualitative Angabe ausreichend ist. Von den Moden des TM01-Pass-Bandes hat nur die Beschleuniger-Mode einen großen Transittime-Faktor. Alle anderen Moden haben einen erheblich kleineren Transittime-Faktor. Bei den Dipol-Moden des zweiten und dritten Pass-Bandes zeigte sich eine Aufspaltung in zwei azimutale Polarisationsrichtungen, was auf einen kleinen Geometriefehler der Cavity schließen läßt. Die Polarisationsrichtung dreht sich vom einen zum anderen Ende der Cavity um etwa 10°. Da es sich um eine kleine Abweichung handelt, wurden die weiteren Messungen nur für eine der beiden Polarisationsrichtungen durchgeführt. Im TE/TM-Dipol-Pass-Band gibt es mehrere Moden, die wegen ihrer recht hohen transversalen Shuntimpedanz mit Phasenfaktor als Störmoden in Frage kommen. Die numerisch berechneten Werte stimmen bei diesen Moden relativ gut mit den gemessenen Werten überein. Wie schon bei den Monopol-Moden weichen die Werte für die Moden mit geringem Transittime-Faktor voneinander ab. Am TE-artigen Ende des Pass-Bandes werden die gemessenen Werte aufgrund der begrenzten Selektivität ungenau. Es ist allerdings zu bedenken, daß die gleichen kleinen Geometriefehler, die eine Polarisation bewirkt haben, auch für die Abweichungen bei den kleinen Transittime-Faktoren verantwortlich sein können. Im TM/TE-Dipol-Pass-Band ist die transversale Shuntimpedanz ohne Phasenfaktor bei allen Moden größer als im TE/TM-Pass-Band. Auch hier haben mehrere der Moden eine hohe transversale Shuntimpedanz mit Phasenfaktor. Die numerischen Berechnungen stimmen für dieses Pass-Band besser mit den Messungen überein als im TE/TM-Pass- Band. Mit den gemessenen Werten ist es möglich, den Einsatzpunkt für den BBU unter Berücksichtigung aller Moden der ersten drei Pass-Bänder zu bestimmem. Für den späteren Einsatz im Beschleuniger ist geplant, die Cavities mit zwei HOM-Dämpfern an den Enden auszustatten. Mit den gemessenen Werten kann berechnet werden, wie groß die Wirkung der Dämpfer sein muß, um bei dem vorgesehenen Strahl einen BBU-freien Betrieb zu ermöglichen. Bei der Vermessung der weiteren Pass-Bänder gibt es noch mehrere Probleme zu lösen. Zum einen überlappen bei den höheren Moden die Bänder einander. Dies erschwert die Identifikation der Moden bei der Messung. Zum anderen gelangt man schnell zu Frequenzen, die oberhalb der jeweiligen Cut-Off-Frequenz für den entsprechender Wellentyp im Strahlrohr liegen. Moden oberhalb Cut-Off können über mehrere Cavities miteinander koppeln und dabei neue Moden über viele Cavities ausbilden. Um die Gefährlichkeit dieser Moden für die Strahlqualität zu untersuchen, ist es erforderlich, die Übertragungscharakteristik (S-Parameter) der gesamten Cavity mit Strahlrohren zu bestimmen. An solchen Messungen wird bereits gearbeitet. Ein anderer Punkt, der näher zu untersuchen wäre, ist der Einfluß kleiner mechanischer Veränderungen auf die transversalen Shuntimpedanzen der Störmoden. Die TESLACavity ist mechanisch relativ instabil. Solche Veränderungen können daher schon durch die elekromagnetischen Kräfte der gepulsten Beschleuniger-Mode auftreten

    Higher-Order-Mode Dämpfer als Strahllagemonitore

    Get PDF
    Im Rahmen dieser Arbeit wurde ein Strahllagemonitor entwickelt, der nur aufgrund der Signale aus den HOM-Dämpfern einer Linearbeschleunigerstruktur die Strahllage mit hoher Genauigkeit bestimmen kann. Ein solcher Monitor hat gegenüber anderen Konzepten einige einzigartige Vorteile. Der HOM-Dämpfer-Strahllagemonitor benötigt keine zusätzlichen Einbauten im Strahlrohr oder der Beschleunigerstruktur. Daher wird keine zusätzliche Länge benötigt. Auch wird eine zusätzliche Emittanzerhöhung durch zusätzliche Impedanzen der Einbauten vermieden. Beide Punkte sind wichtig für den Betrieb eines linearen Kolliders. Ein zweiter Vorteil ist die Messung der Strahllage bezüglich der elektrischen Achse der verwendeten Dipolmode. Wenn als Dipolmode die höhere Mode mit dem störendsten Einfluß auf den Strahl verwendet wird, verfährt die Positionsregelung der Struktur diese automatisch auf die Position, an der der Einfluß dieser Mode minimal ist. Da die anderen Dipolmoden ähnliche Feldgeometrien haben, ist anzunehmen, das ihr Einfluß damit auch weitestgehend minimiert wird. Zur eindeutigen Bestimmung der Strahlposition in der Ebene wurde ein Verfahren entwickelt, daß die Amplituden und die Startphasendifferenz zwischen einer Dipolmode und einer höheren Monopolmode ausnutzt. Durch passende Wahl der Hohlleitergeometrie kann eine monopolartigen Mode in den Dämpferzellen etabliert werden, die das nötige Monopolsignal liefert und in der Frequenz mit der Dipolmode übereinstimmt. Diese Mode vereinfacht erheblich die entwickelte Signalverarbeitungsschaltung. Die Shuntimpedanz dieser Mode wird durch die Geometrie der Hohlleiter bestimmt und kann so eingestellt werden, daß sie für den Betrieb des Strahllagemonitors ausreicht, aber den Strahl noch nicht nennenswert beeinflußt. Durch die Verwendung einer strahlinduzierten Monopolmode als Phasenreferenz ist der Monitor unabhängig von externen Referenzsignalen und funktioniert ohne eingeschaltete Beschleunigungshochfrequenz oder bei falscher Phasenlage des Strahls. Dies ermöglicht es, die Beschleunigerstrukturen auch dann genau zu justieren, wenn der restlichte Beschleuniger noch nicht richtig eingestellt ist oder wenn zu Wartungszwecken einzelne Sektionen während des Betriebs nicht mit Hochfrequenz versorgt werden. Um die Eignung des vorhandenen SBLC-HOM-Dämpfers als Strahllagemonitor zu überprüfen wurden dreidimensionale numerische Feldberechnungen im Frequenz- und Zeitbereich und Messungen an der Dämpferzelle durchgeführt. Für die Messungen ohne Strahl wurde ein Strahlsimulator konstruiert und aufgebaut, der computergesteuerte Messungen mit variablen Ablagen des simulierten Strahls mit einer Auflösung von 1,23 μm erlaubt. Da die vollständige 6 m lange, 180-zellige Beschleunigerstruktur nicht für Messungen zur Verfügung stand und sich auch mit den verfügbaren Computern nicht dreidimensional simulieren ließ, wurde ein eindimensionales ersatzkreisbasiertes Modell des Vielzellers untersucht. Das Ersatzbild aus 879 konzentrierten Bauelementen berücksichtigt die Verstimmung von Zelle zu Zelle, die Zellenverluste, die Dämpferverluste und die Strahlanregung in Abhängigkeit von der Ablage. An dem Ersatzkreis lassen sich die gefangenen Moden und die Wirkung der Dämpfer beobachten. Es liefert bei der Simulation im Zeitbereich als Ergebnis Signale, die verwendet wurden, um die Funktion der Signalverarbeitungsschaltung an der vollständigen Beschleunigerstruktur zu untersuchen. Das eindimensionale Modell hat jedoch auch einige Einschränkungen. Es berücksichtigt nicht die Änderung der Randbedingungen in den Einzelzellen in Abhängigkeit vom Phasenvorschub. Auch beschränkt sich die Simulation auf einen kleinen Teil des durch den Strahl angeregten Frequenzbereiches. Es ist nicht auszuschließen, daß andere Frequenzen die Signalverarbeitungsschalung negativ beeinflussen. Ebenfalls unberücksichtigt bleibt der Einfluß der von Sendeklystron eingespeisten Hochfrequenzleistung. Um diese Einflüsse zu untersuchen wäre es erforderlich, Messungen am realen 180-Zeller mit Strahl und Klystron durchführen zu können. Die vorgenommenen Messungen am Einzeller zeigen, daß das Meßprinzip funktioniert, der vorhandene HOM-Dämpfer als Strahllagemonitor verwendbar ist und die entwickelte Signalverarbeitungsschaltung geeignet ist genaue Positionsinformationen zu liefern. Abgesehen von den ober angesprochenen Einschränkungen bestätigen die Simulationen des 180-Zellers die Übertragbarkeit der Ergebnisse auf Vielzeller. Die Messungen und Simulationen lassen eine Auflösung des fertigen Strahllagemonitors am 180-Zeller in der Größenordnung 1–10 μm und eine relative Genauigkeit kleiner 6,2 % erwarten. Es hat sich gezeigt, daß zur Erzielung hohe Genauigkeit zwei Komponenten des Strahllagemonitors besondere Aufmerksamkeit zu schenken ist. Zum einen muß der HOM-Dämpfer mit den paarweisen Auskoppelstellen präzise, mit guter Symmetrie gefertigt sein. Zum anderen hat der 180°-Hybrid am Eingang der Signalverarbeitungsschaltung großen Einfluß auf die erzielbare Genauigkeit. Beide Komponenten sind wichtig, um die monopol- und dipolartigen Komponenten aus dem ausgekoppelten Signalgemisch sauber voneinander trennen zu können. Wie die Messungen zeigten, ist ein schmalbandiger, auf die verwendete Meßfrequenz spezialisierter, selbst gefertigter Ringhybrid für diese Aufgabe erheblich besser geeignet als ein kommerziell erhältlicher Breitbandhybrid. Bei dem Ringhybrid gibt es jedoch auch noch Verbesserungsmöglichkeiten. Der Ringhybrid wurde präzise gefertigt. Er hat jedoch keine Abgleichmöglichkeit. Eine Korrekturmöglichkeit der Amplitude und Phase an den Eingängen könnte die Auflösung und Genauigkeit noch etwas steigern. Wenn bei der Simulation ein idealer 180°-Hybrid angenommen wird verschwindet ein Großteil des Fehlers. Der nächste Schritt bei der Weiterentwicklung der Signalverarbeitung könnte darin bestehen, die zur Zeit noch getrennt aufgebauten Hochfrequenzkomponenten auf einer gemeinsamen Platine zu integrieren. Zusammen mit dem Mikroprozessorsystem auf einer zweiten Platine entsteht so ein kompaktes System, daß sich preisgünstig in der für einen linearen Kollider erforderlichen großen Stückzahl fertigen läßt

    Energy Propagation through the TESLA Channel: Measurements with Two Waveguides Modes

    Get PDF
    A new method for the determination of S-matrices of devices in multimoded waveguides and first experimental experiences are presented. The theoretical foundations are given. The scattering matrix of a TESLA copper cavity at a frequency above the cut-off of the second waveguide mode has been measured

    Quality factor measurements in cavities with mode overlap

    Get PDF
    A new method of measuring quality factors in cavities is presented. This method is well suited to measure quality factors in undamped cavities as well as in heavily damped cavities, and in addition this method provides a possibility of separating modes and measuring quality factors especially in cases of overlapping modes. Measurements have been carried out on HOM-damped cavities for the DESY/THD linear collider project. Results are presented

    Mode propagation in an iris type accelerator section loaded with single heavily HOM-damped cells

    Get PDF
    The wakefield effects in accelerator sections for future linear colliders will be reduced either by damping by detuning or by a combination of both. For the DESY/THD linac [1] it is forseen to employ heavily HOM-damped cells to provide a strong coupling to the TE/TM11-dipole passband as well as to the TM/TE11-dipole passband. For our experiments we have used wall-slotted damping cells. This leads to several problems concerning the propagation of fundamental and HOM-modes. Experimental investigations have been done. Results are presented

    New technique for quality factor measurements in undamped cavities

    Get PDF
    A new method for measuring quality factors in cavities is presented. This method is capable of measuring Q-factors in heavily damped as well as in undamped cavities. In addition, the possibility of separating overlapping modes and measuring their Q-factors is provided. Measurements on HOM (higher order mode) damped cavities for the DESY/THD linear collider project are presente
    corecore