277 research outputs found

    Optimal Regularizing Effect for Scalar Conservation Laws

    Full text link
    We investigate the regularity of bounded weak solutions of scalar conservation laws with uniformly convex flux in space dimension one, satisfying an entropy condition with entropy production term that is a signed Radon measure. The proof is based on the kinetic formulation of scalar conservation laws and on an interaction estimate in physical space.Comment: 24 pages, assumption (11) in Theorem 3.1 modified together with the example on p. 7, one remark added after the proof of Lemma 4.3, some typos correcte

    Long-time asymptotics for polymerization models

    Get PDF
    This study is devoted to the long-term behavior of nucleation, growth and fragmentation equations, modeling the spontaneous formation and kinetics of large polymers in a spatially homogeneous and closed environment. Such models are, for instance, commonly used in the biophysical community in order to model in vitro experiments of fibrillation. We investigate the interplay between four processes: nucleation, polymeriza-tion, depolymerization and fragmentation. We first revisit the well-known Lifshitz-Slyozov model, which takes into account only polymerization and depolymerization, and we show that, when nucleation is included, the system goes to a trivial equilibrium: all polymers fragmentize, going back to very small polymers. Taking into account only polymerization and fragmentation, modeled by the classical growth-fragmentation equation, also leads the system to the same trivial equilibrium, whether or not nucleation is considered. However, also taking into account a depolymer-ization reaction term may surprisingly stabilize the system, since a steady size-distribution of polymers may then emerge, as soon as polymeriza-tion dominates depolymerization for large sizes whereas depolymerization dominates polymerization for smaller ones-a case which fits the classical assumptions for the Lifshitz-Slyozov equations, but complemented with fragmentation so that " Ostwald ripening " does not happen.Comment: https://link.springer.com/article/10.1007/s00220-018-3218-

    Dirac mass dynamics in multidimensional nonlocal parabolic equations

    Get PDF
    Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a structure of gradient flow. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models darwinian evolution

    Super-linear propagation for a general, local cane toads model

    Get PDF
    We investigate a general, local version of the cane toads equation, which models the spread of a population structured by unbounded motility. We use the thin-front limit approach of Evans and Souganidis in [Indiana Univ. Math. J., 1989] to obtain a characterization of the propagation in terms of both the linearized equation and a geometric front equation. In particular, we reduce the task of understanding the precise location of the front for a large class of equations to analyzing a much smaller class of Hamilton-Jacobi equations. We are then able to give an explicit formula for the front location in physical space. One advantage of our approach is that we do not use the explicit trajectories along which the population spreads, which was a basis of previous work. Our result allows for large oscillations in the motility

    Distributed synaptic weights in a LIF neural network and learning rules

    Full text link
    Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connec-tivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorized a learned signal.Comment: Physica D: Nonlinear Phenomena, Elsevier, 201

    Employee turnover prediction and retention policies design: a case study

    Get PDF
    This paper illustrates the similarities between the problems of customer churn and employee turnover. An example of employee turnover prediction model leveraging classical machine learning techniques is developed. Model outputs are then discussed to design \& test employee retention policies. This type of retention discussion is, to our knowledge, innovative and constitutes the main value of this paper

    Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result

    Get PDF
    We study two equations of Lotka-Volterra type that describe the Darwinian evolution of a population density. In the first model a Laplace term represents the mutations. In the second one we model the mutations by an integral kernel. In both cases, we use a nonlinear birth-death term that corresponds to the competition between the traits leading to selection. In the limit of rare or small mutations, we prove that the solution converges to a sum of moving Dirac masses. This limit is described by a constrained Hamilton-Jacobi equation. This was already proved by B. Perthame and G. Barles for the case with a Laplace term. Here we generalize the assumptions on the initial data and prove the same result for the integro-differential equation

    Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway

    Get PDF
    Kinetic-transport equations are, by now, standard models to describe the dynamics of populations of bacteria moving by run-and-tumble. Experimental observations show that bacteria increase their run duration when encountering an increasing gradient of chemotactic molecules. This led to a first class of models which heuristically include tumbling frequencies depending on the path-wise gradient of chemotactic signal. More recently, the biochemical pathways regulating the flagellar motors were uncovered. This knowledge gave rise to a second class of kinetic-transport equations, that takes into account an intra-cellular molecular content and which relates the tumbling frequency to this information. It turns out that the tumbling frequency depends on the chemotactic signal, and not on its gradient. For these two classes of models, macroscopic equations of Keller-Segel type, have been derived using diffusion or hyperbolic rescaling. We complete this program by showing how the first class of equations can be derived from the second class with molecular content after appropriate rescaling. The main difficulty is to explain why the path-wise gradient of chemotactic signal can arise in this asymptotic process. Randomness of receptor methylation events can be included, and our approach can be used to compute the tumbling frequency in presence of such a noise

    Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient

    Get PDF
    Several mathematical models of tumor growth are now commonly used to explain medical observations and predict cancer evolution based on images. These models incorporate mechanical laws for tissue compression combined with rules for nutrients availability which can differ depending on the situation under consideration, in vivo or in vitro. Numerical solutions exhibit, as expected from medical observations, a proliferative rim and a necrotic core. However, their precise profiles are rather complex, both in one and two dimensions.Comment: 25 page
    corecore