74 research outputs found
Botulinum Toxin Adverse Events
Botulinum toxin acts at the neuromuscular junction (motor plaque) blocking the release and effects of acetylcholine (ACh), a neurotransmitter of both the central nervous system (CNS) and the peripheral nervous system (SNP). By inhibiting the release of acetylcholine, botulinum toxin interferes with the nervous impulse and causes a characteristic flaccid paralysis of the muscles. This effect is used to decrease wrinkles of the facial skin and chin providing a smooth appearance and for the treatment of a variety of human syndromes characterized by hyperfunction of selected nerve terminals. Side effects of this treatment are rare, but are essentially related to the active ingredient of the drug or to medical malpractice. These adverse events and their possible therapy are discussed in this chapter
Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19
Antimicrobial peptides (AMPs), α- and β-defensins, possess antiviral properties. These AMPs achieve viral inhibition through different mechanisms of action. For example, they can: (i) bind directly to virions; (ii) bind to and modulate host cell-surface receptors, disrupting intracellular signaling; (iii) function as chemokines to augment and alter adaptive immune responses. Given their antiviral properties and the fact that the development of an effective coronavirus disease 2019 (COVID-19) treatment is an urgent public health priority, they and their derivatives are being explored as potential therapies against COVID-19. These explorations using various strategies, range from their direct interaction with the virus to using them as vaccine adjuvants. However, AMPs do not work in isolation, specifically in their role as potent immune modulators, where they interact with toll-like receptors (TLRs) and chemokine receptors. Both of these receptors have been shown to play roles in COVID-19 pathogenesis. In addition, it is known that a healthy lifestyle accompanied by controlled physical activity can represent a natural weapon against COVID-19. In competitive athletes, an increase in serum defensins has been shown to function as self-protection from the attack of microorganisms, consequently a controlled physical activity could act as a support to any therapies in fighting COVID-19. Therefore, including information on all these players' interactions would produce a complete picture of AMP-based therapies' response
LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes
<p>Abstract</p> <p>Background</p> <p>The release of LPS by bacteria stimulates both immune and specific epithelial cell types to release inflammatory mediators. It is known that LPS induces the release of IL-8 by intestinal mucosal cells. Because it is now emerging that bacteria may induce alteration of epigenetic patterns in host cells, we have investigated whether LPS-induced IL-8 activation in human intestinal epithelial cells involves changes of histone modifications and/or DNA methylation at IL-8 gene regulatory region.</p> <p>Results</p> <p>RT-PCR analysis showed that IL-8 mRNA levels rapidly increase after exposure of HT-29 cells to LPS. DNA demethylating agents had no effects on IL-8 expression, suggesting that DNA methylation was not involved in IL-8 gene regulation. Consistently we found that 5 CpG sites located around IL-8 transcription start site (-83, -7, +73, +119, +191) were unmethylated on both lower and upper strand either in LPS treated or in untreated HT-29 cells, as well as in normal intestinal mucosa.</p> <p>Conversely, pretreatment of HT-29 cells with deacetylase inhibitors strengthened the LPS-mediated IL-8 activation. Inhibitors of histone deacetylases could induce IL-8 mRNA expression also in the absence of LPS, suggesting that chromatin modifications could be involved in IL-8 gene regulation. Chromatin immunoprecipitation analyses showed that, concurrently with IL-8 activation, transient specific changes in H3 acetylation and H3K4, H3K9 and H3K27 methylation occurred at IL-8 gene promoter during LPS stimulation. Changes of H3-acetyl, H3K4me2 and H3K9me2 levels occurred early, transiently and corresponded to transcriptional activity, while changes of H3K27me3 levels at IL-8 gene occurred later and were long lasting.</p> <p>Conclusion</p> <p>The results showed that specific chromatin modifications occurring at IL-8 gene, including histone H3 acetylation and methylation, mark LPS-mediated IL-8 activation in intestinal epithelial cells while it is unlikely that DNA methylation of IL-8 promoter is directly involved in IL-8 gene regulation in these cells.</p
TACC3 mediates the association of MBD2 with histone acetyltransferases and relieves transcriptional repression of methylated promoters
We have recently reported that a novel MBD2 interactor (MBDin) has the capacity to reactivate transcription from MBD2-repressed methylated promoters even in the absence of demethylation events. Here we show that another unrelated protein, TACC3, displays a similar activity on methylated genes. In addition the data reported here provide possible molecular mechanisms for the observed phenomenon. Immunoprecipitation experiments showed that MBD2/TACC3 form a complex in vivo with the histone acetyltransferase pCAF. MBD2 could also associate with HDAC2, a component of MeCP1 repression complex. However, we found that the complexes formed by MBD2 with TACC3/pCAF and with HDAC2 were mutually exclusive. Moreover, HAT enzymatic assays demonstrated that HAT activity associates with MBD2 in vivo and that such association significantly increased when TACC3 was over-expressed. Overall our findings suggest that TACC3 can be recruited by MBD2 on methylated promoters and is able to reactivate transcription possibly by favoring the formation of an HAT-containing MBD2 complex and, thus, switching the repression potential of MBD2 in activation even prior to eventual demethylation
PATZ Attenuates the RNF4-mediated Enhancement of Androgen Receptor-dependent Transcription *
PATZ is a transcriptional repressor affecting the basal activity of different promoters, whereas RNF4 is a transcriptional activator. The association of PATZ with RNF4 switches the activation to repression of selected basal promoters. Because RNF4 interacts also with the androgen receptor (AR) functioning as a coactivator and, in turn, RNF4 associates with PATZ, we investigated whether PATZ functions as an AR coregulator. We demonstrate that PATZ does not influence directly the AR response but acts as an AR corepressor in the presence of RNF4. Such repression is not dependent on histone deacetylases. A mutant RNF4 that does not bind PATZ but enhances AR-dependent transcription is not influenced by PATZ, demonstrating that the repression by PATZ occurs only upon binding to RNF4. We also demonstrate that RNF4, AR, and PATZ belong to the same complex in vivo also in the presence of androgen, suggesting that repression is not mediated by the displacement of RNF4 from AR. Finally, we show that the repression of endogenous PATZ expression by antisense expression plasmids in LNCaP cells results in a stronger androgen response. Our findings demonstrate that PATZ is a novel AR coregulator that acts by modulating the effect of a coactivator. This could represent a novel and more general mechanism to finely tune the androgen response
Diagnostic and Therapeutic Potential for HNP-1, HBD-1 and HBD-4 in Pregnant Women with COVID-19
Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-β, IL-2 and IL-10, β-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-β, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of "protection of the fetus" from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother's body is responding to the viral attack. These results allow us to hypothesize a mechanism of "trafficking" of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress
A novel member of the BTB/POZ family, PATZ, associates with the RNF4 RING finger protein and acts as a transcriptional repressor.
We have identified a novel human gene encoding a 59-kDa POZ-AT hook-zinc finger protein (PATZ) that interacts with RNF4, a mediator of androgen receptor activity, and acts as a transcriptional repressor. PATZ cDNA was isolated through a two-hybrid interaction screening using the RING finger protein RNF4 as a bait. In vitro and in vivo interaction between RNF4 and PATZ was demonstrated by protein-protein affinity chromatography and coimmunoprecipitation experiments. Such interaction occurred through a small region of PATZ containing an AT-hook DNA binding domain. Immunofluorescence staining and confocal microscopy showed that PATZ localizes in distinct punctate nuclear regions and colocalizes with RNF4. Functional analysis was performed by cotransfection assays: PATZ acted as a transcriptional repressor, whereas its partner RNF4 behaved as a transcriptional activator. When both proteins were overexpressed a strong repression of the basal transcription was observed, indicating that the association of PATZ with RNF4 switches activation to repression. In addition, RNF4 was also found to associate with HMGI(Y), a chromatin-modeling factor containing AT-hook domains
Epigenetic Switch at Atp2a2 and Myh7 Gene Promoters in Pressure Overload-Induced Heart Failure
Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF
Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells.
Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci
- …