487 research outputs found

    Bayesian Learning of Sum-Product Networks

    Full text link
    Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning. First, we decompose the problem into i) laying out a computational graph, and ii) learning the so-called scope function over the graph. The first is rather unproblematic and akin to neural network architecture validation. The second represents the effective structure of the SPN and needs to respect the usual structural constraints in SPN, i.e. completeness and decomposability. While representing and learning the scope function is somewhat involved in general, in this paper, we propose a natural parametrisation for an important and widely used special case of SPNs. These structural parameters are incorporated into a Bayesian model, such that simultaneous structure and parameter learning is cast into monolithic Bayesian posterior inference. In various experiments, our Bayesian SPNs often improve test likelihoods over greedy SPN learners. Further, since the Bayesian framework protects against overfitting, we can evaluate hyper-parameters directly on the Bayesian model score, waiving the need for a separate validation set, which is especially beneficial in low data regimes. Bayesian SPNs can be applied to heterogeneous domains and can easily be extended to nonparametric formulations. Moreover, our Bayesian approach is the first, which consistently and robustly learns SPN structures under missing data.Comment: NeurIPS 2019; See conference page for supplemen

    On pre-image iterations for speech enhancement

    Get PDF
    In this paper, we apply kernel PCA for speech enhancement and derive pre-image iterations for speech enhancement. Both methods make use of a Gaussian kernel. The kernel variance serves as tuning parameter that has to be adapted according to the SNR and the desired degree of de-noising. We develop a method to derive a suitable value for the kernel variance from a noise estimate to adapt pre-image iterations to arbitrary SNRs. In experiments, we compare the performance of kernel PCA and pre-image iterations in terms of objective speech quality measures and automatic speech recognition. The speech data is corrupted by white and colored noise at 0, 5, 10, and 15 dB SNR. As a benchmark, we provide results of the generalized subspace method, of spectral subtraction, and of the minimum mean-square error log-spectral amplitude estimator. In terms of the scores of the PEASS (Perceptual Evaluation Methods for Audio Source Separation) toolbox, the proposed methods achieve a similar performance as the reference methods. The speech recognition experiments show that the utterances processed by pre-image iterations achieve a consistently better word recognition accuracy than the unprocessed noisy utterances and than the utterances processed by the generalized subspace method
    • …
    corecore