6 research outputs found
Shadow price of information in discrete time stochastic optimization
The shadow price of information has played a central role in stochastic optimization ever since its introduction by Rockafellar and Wets in the mid-seventies. This article studies the concept in an extended formulation of the problem and gives relaxed sufficient conditions for its existence. We allow for general adapted decision strategies, which enables one to establish the existence of solutions and the absence of a duality gap e.g. in various problems of financial mathematics where the usual boundedness assumptions fail. As applications, we calculate conjugates and subdifferentials of integral functionals and conditional expectations of normal integrands. We also give a dual form of the general dynamic programming recursion that characterizes shadow prices of information
Duality and optimality conditions in stochastic optimization and mathematical finance
This article studies convex duality in stochastic optimization over finite discrete-time. The first part of the paper gives general conditions that yield explicit expressions for the dual objective in many applications in operations research and mathematical finance. The second part derives optimality conditions by combining general saddle-point conditions from convex duality with the dual representations obtained in the first part of the paper. Several applications to stochastic optimization and mathematical finance are given