9,483 research outputs found
Induced radionuclides in astronauts Final report, 15 Jun. 1967 - 1 Sep. 1968
Experimental determination of cosmic radiation effects on tissue equivalent materials and human
Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3
Motivated by recent neutron and x-ray observations in V_2O_3, we derive the
effective Hamiltonian in the strong coupling limit of an Hubbard model with
three degenerate t_{2g} states containing two electrons coupled to spin S = 1,
and use it to re-examine the low-temperature ground-state properties of this
compound. An axial trigonal distortion of the cubic states is also taken into
account. Since there are no assumptions about the symmetry properties of the
hopping integrals involved, the resulting spin-orbital Hamiltonian can be
generally applied to any crystallographic configuration of the transition metal
ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of
V_2O_3 we consider the antiferromagnetic insulating phase. We find two
variational regimes, depending on the relative size of the correlation energy
of the vertical pairs and the in-plane interaction energy. The former favors
the formation of stable molecules throughout the crystal, while the latter
tends to break this correlated state. We determine in both cases the minimizing
orbital solutions for various spin configurations, and draw the corresponding
phase diagrams. We find that none of the symmetry-breaking stable phases with
the real spin structure presents an orbital ordering compatible with the
magnetic space group indicated by very recent observations of non-reciprocal
x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very
small excitation energy in two distinct regions of the phase space, which might
turn into the true ground state of V_2O_3 due to the favorable coupling with
the lattice. We illustrate merits and drawbacks of the various solutions and
discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure
Cosmic ray induced radioactivity in astronauts as a measure of radiation dose /a/
Cosmic ray induced radioactivity in astronauts as measure of radiation dosag
How will disenfranchised Peoples adapt to Climate Change? Strengthening the Ecojustice Movement
The Fourth assessment of the Intergovernmental Panel on Climate Change (IPCC) acknowledged
That millions of people are currently, and will increasingly be, affected by the impacts of climate change, in the form of floods, droughts and other extreme events, as well as related threats to food security. In response to these global environmental changes, the international community, including civil society, is acting on the need for immediate adaptation measures and is developing strategies for future adaptation. However, the impacts of climate change are unevenly distributed, with many of the poorest, most vulnerable peoples experiencing the immediate effects of climate change, in the here and now. As the IPCC noted, developing countries are disproportionately affected by climate change and often, the least able to adapt due to lack of infrastructure and resources
Strengthening Resilience by thinking of Knowledge as a nutrient connecting the local person to global thinking: The case of Social Technology/Tecnologia Social
In this chapter, we describe the Knowledge as a Nutrient framework that emerged from these conversations. We describe how it relates to the Tecnologia Social policy approach to sustainability, developed in Brazil (Dagnino et al. 2004, Fundação Banco do Brasil 2009, Costa 2013), which is not well known in the anglophone world. Tecnologia Social was both inspired by and rooted in Paulo Freire’s pedagogical thinking (2000, Klix 2014).  We show how this framework has the potential to increase community resilience and adaptive capacity, not only for communities that face and must adapt to climate change but for all communities in the throes of complex social, ecological, economic and political transitions.This research was supported by the International Development Research Centre, grant number IDRC GRANT NO. 106002-00
Quantum spin liquid at finite temperature: proximate dynamics and persistent typicality
Quantum spin liquids are long-range entangled states of matter with emergent
gauge fields and fractionalized excitations. While candidate materials, such as
the Kitaev honeycomb ruthenate -RuCl, show magnetic order at low
temperatures , here we demonstrate numerically a dynamical crossover from
magnon-like behavior at low and frequencies to long-lived
fractionalized fermionic quasiparticles at higher and . This
crossover is akin to the presence of spinon continua in quasi-1D spin chains.
It is further shown to go hand in hand with persistent typicality down to very
low . This aspect, which has also been observed in the spin-1/2 kagome
Heisenberg antiferromagnet, is a signature of proximate spin liquidity and
emergent gauge degrees of freedom more generally, and can be the basis for the
numerical study of many finite- properties of putative spin liquids.Comment: 13 pages, 11 figures, accepted versio
Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals
Motivated by recent results of th order muffin-tin orbital (NMTO)
implementation of the density functional theory (DFT), we re-examine
low-temperature ground-state properties of the anti-ferromagnetic insulating
phase of vanadium sesquioxide VO. The hopping matrix elements obtained
by the NMTO-downfolding procedure differ significantly from those previously
obtained in electronic structure calculations and imply that the in-plane
hopping integrals are as important as the out-of-plane ones. We use the NMTO
hopping matrix elements as input and perform a variational study of the ground
state. We show that the formation of stable molecules throughout the crystal is
not favorable in this case and that the experimentally observed magnetic
structure can still be obtained in the atomic variational regime. However the
resulting ground state (two electrons occupying the degenerate
doublet) is in contrast with many well established experimental observations.
We discuss the implications of this finding in the light of the non-local
electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure
Viable 3C-SiC-on-Si MOSFET design disrupting current Material Technology Limitations
The cubic polytype (3C-) of Silicon Carbide (SiC) is an emerging semiconductor technology for power devices. The featured isotropic material properties along with the Wide Band Gap (WBG) characteristics make it an excellent choice for power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Nonetheless, material related limitations originate from the advantageous fact that 3C-SiC can be grown on Silicon (Si) wafers. One of these major limitations is an almost negligible activation of the p-type dopants after ion implantation because the annealing has to take place at relatively low temperatures. In this paper, a novel process flow for a vertical 3C-SiC-on-Si MOSFET is presented to overcome the difficulties that currently exist in obtaining a p-body region through implantation. The proposed design has been accurately simulated with Technology Computer Aided Design (TCAD) process and device software and a comparison is performed with the conventional SiC MOSFET design. The simulated output characteristics demonstrated a reduced on-resistance and at the same time it is shown that the blocking capability can be maintained to the same level. The promising performance of the novel design discussed in this paper is potentially the solution needed and a huge step towards the realisation of 3C-SiC-on-Si MOSFETs with commercially grated characteristics
- …