19,676 research outputs found

    Rejuvenation and Memory in model Spin Glasses in 3 and 4 dimensions

    Full text link
    We numerically study aging for the Edwards-Anderson Model in 3 and 4 dimensions using different temperature-change protocols. In D=3, time scales a thousand times larger than in previous work are reached with the SUE machine. Deviations from cumulative aging are observed in the non monotonic time behavior of the coherence length. Memory and rejuvenation effects are found in a temperature-cycle protocol, revealed by vanishing effective waiting times. Similar effects are reported for the D=3$site-diluted ferromagnetic Ising model (without chaos). However, rejuvenation is reduced if off-equilibrium corrections to the fluctuation-dissipation theorem are considered. Memory and rejuvenation are quantitatively describable in terms of the growth regime of the spin-glass coherence length.Comment: Extended protocols. Accepted in Phys. Rev. B. 10 postscript figure

    Phenomenology of SUSY with scalar sequestering

    Full text link
    The defining feature of scalar sequestering is that the MSSM squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition - scalar masses vanish while gaugino and Higgsino masses are unsuppressed - is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B_mu term also drives the Higgs soft masses to -|mu|^2. Thus the supersymmetric contribution to the Higgs mass matrix from the mu-term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (mu > TeV) than scalar Higgses (m_A ~ few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.Comment: 16 pages and 3 figure

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table

    Three-dimensional Heisenberg spin glass under a weak random anisotropy

    Get PDF
    We perform a finite-size scaling study of the three-dimensional Heisenberg spin glass in the presence of weak random anisotropic interactions, up to lattice sizes L = 32. Anisotropies have a major impact on the phase transition. The chiral-glass susceptibility does not diverge due to a large anomalous dimension. It follows that the anisotropic spin glass belongs to a Universality Class different from the isotropic model, which questions the applicability of the chirality scenario

    The spin glass transition of the three dimensional Heisenberg spin glass

    Full text link
    It is shown, by means of Monte Carlo simulation and Finite Size Scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass orderings develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes possible to thermalize lattices of size L=32, larger than in any previous spin glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allow us to consider scaling corrections.Comment: 4 pages, 4 Postscript figures, version to be published in Physical Review Letter
    • …
    corecore