137 research outputs found

    Resonant Magnetization Tunneling in Mn12 Acetate: The Absence of Inhomogeneous Hyperfine Broadening

    Full text link
    We present the results of a detailed study of the thermally-assisted-resonant-tunneling relaxation rate of Mn12 acetate as a function of an external, longitudinal magnetic field and find that the data can be fit extremely well to a Lorentzian function. No hint of inhomogeneous broadening is found, even though some is expected from the Mn nuclear hyperfine interaction. This inconsistency implies that the tunneling mechanism cannot be described simply in terms of a random hyperfine field.Comment: Some minor revisions, title changed, updated figures, two added notes, one added reference. RevTeX, 4 pages, 3 postscript figures. Submitted to Rapid Communication

    Magnetization of Mn_12 Ac in a slowly varying magnetic field: an ab initio study

    Full text link
    Beginning with a Heisenberg spin Hamiltonian for the manganese ions in the Mn_12 Ac molecule, we find a number of low-energy states of the system. We use these states to solve the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of a slowly varying magnetic field. We study the effects of the field sweep rate, fourth order anisotropic spin interactions and a transverse field on the weights of the different states as well as the magnetization steps which are known to occur in the hysteresis plots in this system. We find that the fourth order term and a slow field sweep rate are crucial for obtaining prominent steps in magnetization in the hysteresis plots.Comment: LaTeX, 11 pages, 12 eps figure

    Random Matrix Model for Superconductors in a Magnetic Field

    Full text link
    We introduce a random matrix ensemble for bulk type-II superconductors in the mixed state and determine the single-particle excitation spectrum using random matrix theory. The results are compared with planar tunnel junction experiments in PbBi thin films. More low energy states appear than in the Abrikosov-Gor'kov-Maki or Ginzburg-Landau descriptions, consistent with observations.Comment: 4 pages, 1 postscript figure, to appear in Phys. Rev. Let

    High frequency resonant experiments in Fe8_8 molecular clusters

    Full text link
    Precise resonant experiments on Fe8_{8} magnetic clusters have been conducted down to 1.2 K at various tranverse magnetic fields, using a cylindrical resonator cavity with 40 different frequencies between 37 GHz and 110 GHz. All the observed resonances for both single crystal and oriented powder, have been fitted by the eigenstates of the hamiltonian H=DSz2+ESx2gμBHS{\cal H}=-DS_z^2+ES_x^2-g\mu_B{\bf H}\cdot {\bf S}. We have identified the resonances corresponding to the coherent quantum oscillations for different orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000

    Using polarized maser to detect high-frequency relic gravitational waves

    Full text link
    A GHz maser beam with Gaussian-type distribution passing through a homogenous static magnetic field can be used to detect gravitational waves (GWs) with the same frequency. The presence of GWs will perturb the electromagnetic (EM) fields, giving rise to perturbed photon fluxes (PPFs). After being reflected by a fractal membrane, the perturbed photons suffer little decay and can be measured by a microwave receiver. This idea has been explored to certain extent as a method for very high frequency gravitational waves. In this paper, we examine and develop this method more extensively, and confront the possible detection with the predicted signal of relic gravitational waves (RGWs). A maser beam with high linear polarization is used to reduce the background photon fluxes (BPFs) in the detecting direction as the main noise. As a key factor of applicability of this method, we give a preliminary estimation of the sensitivity of a sample detector limited by thermal noise using currently common technology. The minimal detectable amplitude of GWs is found to be hmin1030h_{\rm{min}}\sim10^{-30}. Comparing with the known spectrum of the RGWs in the accelerating universe for β=1.9\beta=-1.9, there is still roughly a gap of 454\sim 5 orders. However, possible improvements on the detector can further narrow down the gap and make it a feasible method to detect high frequency RGWs.Comment: 20 pages, 6 figures, accepted for Phys. Rev.

    Nonexponential Relaxation of Magnetization at the Resonant Tunneling Point under a Fluctuating Random Noise

    Full text link
    Nonexponential relaxation of magnetization at resonant tunneling points of nanoscale molecular magnets is interpreted to be an effect of fluctuating random field around the applied field. We demonstrate such relaxation in Langevin equation analysis and clarify how the initial relaxation (square-root time) changes to the exponential decay. The scaling properties of the relaxation are also discussed.Comment: 4 pages, 4 fgiure

    Interplay between localized and itinerant d electrons in a frustrated metallic antiferromagnet, 2H-AgNiO2

    Full text link
    We report the electronic and magnetic behaviour of the frustrated triangular metallic antiferromagnet 2H-AgNiO2 in high magnetic fields (54 T) using thermodynamic and transport measurements. Here localized d electrons are arranged on an antiferromagnetic triangular lattice nested inside a honeycomb lattice with itinerant d electrons. When the magnetic field is along the easy axis we observe a cascade of field-induced transitions, attributed to the competition between easy-axis anisotropy, geometrical frustration and coupling of the localized and itinerant system. The quantum oscillations data suggest that the Fermi surface is reconstructed by the magnetic order but in high fields magnetic breakdown orbits are possible. The itinerant electrons are extremely sensitive to scattering by spin fluctuations and a significant mass enhancement (~ 3) is found.Comment: 4 page

    Voluntarily reported prescribing, monitoring and medication transfer errors in intensive care units in The Netherlands

    Get PDF
    Background Medication errors occur frequently in intensive care units (ICU). Voluntarily reported medication errors form an easily available source of information. Objective This study aimed to characterize prescribing, monitoring and medication transfer errors that were voluntarily reported in the ICU, in order to reveal medication safety issues. Setting This retrospective data analysis study included reports of medication errors from eleven Dutch ICU's from January 2016 to December 2017. Method We used data extractions from the incident reporting systems of the participating ICU's. The reports were transferred into one database and categorized into type of error, cause, medication (groups), and patient harm. Descriptive statistics were used to calculate the proportion of medication errors and the distribution of subcategories. Based on the analysis, ICU medication safety issues were revealed. Main outcome measure The main outcome measure was the proportion of prescribing, monitoring and medication transfer error reports. Results Prescribing errors were reported most frequently (n = 233, 33%), followed by medication transfer errors (n = 85, 12%) and monitoring errors (n = 27, 4%). Other findings were: medication transfer errors frequently caused serious harm, especially the omission of home medication involving the central nervous system and proton pump inhibitors; omissions and dosing errors occurred most frequently; protocol problems caused a quarter of the medication errors; and medications needing blood level monitoring (e.g. tacrolimus, vancomycin, heparin and insulin) were frequently involved. Conclusion This analysis of voluntarily reported prescribing, monitoring and medication transfer errors warrants several improvement measures in these processes, which may help to increase medication safety in the ICU

    Thermodynamic properties of a small superconducting grain

    Full text link
    The reduced BCS Hamiltonian for a metallic grain with a finite number of electrons is considered. The crossover between the ultrasmall regime, in which the level spacing, dd, is larger than the bulk superconducting gap, Δ\Delta, and the small regime, where Δd\Delta \gtrsim d, is investigated analytically and numerically. The condensation energy, spin magnetization and tunneling peak spectrum are calculated analytically in the ultrasmall regime, using an approximation controlled by 1/lnN1/\ln N as small parameter, where NN is the number of interacting electron pairs. The condensation energy in this regime is perturbative in the coupling constant λ\lambda, and is proportional to dNλ2=λ2ωDd N \lambda^2 = \lambda^2 \omega_D. We find that also in a large regime with Δ>d\Delta>d, in which pairing correlations are already rather well developed, the perturbative part of the condensation energy is larger than the singular, BCS, part. The condition for the condensation energy to be well approximated by the BCS result is found to be roughly Δ>dωD\Delta > \sqrt{d \omega_D}. We show how the condensation energy can, in principle, be extracted from a measurement of the spin magnetization curve, and find a re-entrant susceptibility at zero temperature as a function of magnetic field, which can serve as a sensitive probe for the existence of superconducting correlations in ultrasmall grains. Numerical results are presented which suggest that in the large NN limit the 1/N correction to the BCS result for the condensation energy is larger than Δ\Delta.Comment: 17 pages, 7 figures, Submitted to Phys. Rev.

    Rough droplet model for spherical metal clusters

    Full text link
    We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid drop model. These deformations correspond to a surface roughness which we characterize by a single parameter Δ\Delta. We derive a simple analytic approximate expression determining Δ\Delta as a function of temperature and cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis and compare with recent data for shell energy of sodium clusters in the size range 50<N<25050 < N < 250. A small surface roughness Δ0.6\Delta\simeq 0.6 \AA~ is seen to give a reasonable account of the decrease of amplitude of the shell structure observed in experiment. Moreover -- contrary to usual Jahn-Teller type of deformations -- roughness correctly reproduces the shape of the shell energy in the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to appear in Phys. Rev.
    corecore