45,300 research outputs found

    The Effects of Spatio-temporal Resolution on Deduced Spicule Properties

    Full text link
    Spicules have been observed on the sun for more than a century, typically in chromospheric lines such as H-alpha and Ca II H. Recent work has shown that so-called 'type II' spicules may have a role in providing mass to the corona and the solar wind. In chromospheric filtergrams these spicules are not seen to fall back down, and they are shorter-lived and more dynamic than the spicules that have been classically reported in ground-based observations. Observations of type II spicules with Hinode show fundamentally different properties from what was previously measured. In earlier work we showed that these dynamic type II spicules are the most common type, a view that was not properly identified by early observations.The aim of this work is to investigate the effects of spatio-temporal resolution in the classical spicule measurements. Making use of Hinode data degraded to match the observing conditions of older ground-based studies, we measure the properties of spicules with a semi-automated algorithm. These results are then compared to measurements using the original Hinode data. We find that degrading the data has a significant effect on the measured properties of spicules. Most importantly, the results from the degraded data agree well with older studies (e.g. mean spicule duration more than 5 minutes, and upward apparent velocities of about 25 km/s). These results illustrate how the combination of spicule superposition, low spatial resolution and cadence affect the measured properties of spicules, and that previous measurements can be misleading.Comment: Accepted for publication in ApJ. 5 pages, 3 figures. Movies of figures 1 and 3 available via Data Conservanc

    A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Full text link
    In this work, we study the propagators of matter fields within the framework of the Refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the Refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri et al 2016], the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.Comment: 27 pages, no figures; V2, minor modifications, to appear in EPJ

    Space-time Torsion and Neutrino Oscillations in Vacuum

    Full text link
    The objective of this study is to verify the consistency of the prescription of alternative minimum coupling (connection) proposed by the Teleparallel Equivalent to General Relativity (TEGR) for the Dirac equation. With this aim, we studied the problem of neutrino oscillations in Weitzenbock space-time in the Schwarzschild metric. In particular, we calculate the phase dynamics of neutrinos. The relation of spin of the neutrino with the space-time torsion is clarified through the determination of the phase differences between spin eigenstates of the neutrinos.Comment: 07 pages, no figure

    Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets

    Full text link
    Using a model of nonmagnetic impurity potential, we have examined the behavior of planar vortex solutions in the classical two-dimensional XY ferromagnets in the presence of a spin vacancy localized out of the vortex core. Our results show that a spinless atom impurity gives rise to an effective potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex

    A water level relationship between consecutive gauge stations along Solim\~oes/Amazonas main channel: a wavelet approach

    Full text link
    Gauge stations are distributed along the Solim\~oes/Amazonas main channel to monitor water level changes over time. Those measurements help quantify both the water movement and its variability from one gauge station to the next downstream. The objective of this study is to detect changes in the water level relationship between consecutive gauge stations along the Solim\~oes/Amazonas main channel, since 1980. To carry out the analyses, data spanning from 1980 to 2010 from three consecutive gauges (Tefe, Manaus and Obidos) were used to compute standardized daily anomalies. In particular for infra-annual periods it was possible to detect changes for the water level variability along the Solim\~oes/Amazonas main channel, by applying the Morlet Wavelet Transformation (WT) and Wavelet Cross Coherence (WCC) methods. It was possible to quantify the waves amplitude for the WT infra-annual scaled-period and were quite similar to the three gauge stations denoting that the water level variability are related to the same hydrological forcing functions. Changes in the WCC was detected for the Manaus-Obidos river stretch and this characteristic might be associated with land cover changes in the floodplains. The next steps of this research, will be to test this hypotheses by integrating land cover changes into the floodplain with hydrological modelling simulations throughout the time-series
    • …
    corecore