36,963 research outputs found

    Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets

    Full text link
    Thermodynamic formulas for investigating systems with density and/or temperature dependent particle masses are generally derived from the fundamental derivation equality of thermodynamics. Various problems in the previous treatments are discussed and modified. Properties of strange quark matter in bulk and strangelets at both zero and finite temperature are then calculated based on the new thermodynamic formulas with a new quark mass scaling, which indicates that low mass strangelets near beta equilibrium are multi-quark states with an anti-strange quark, such as the pentaquark (u^2d^2\bar{s}) for baryon nmber 1 and the octaquark (u^4d^3\bar{s}) for dibaryon etc.Comment: 14 pages, 12 figures, Revtex4 styl

    Color-flavor locked strangelets in a quark mass density-dependent model

    Get PDF
    The color-flavor locked (CFL) phase of strangelets is investigated in a quark mass density-dependent model. Parameters are determined by stability arguments. It is concluded that three solutions to the system equations can be found, corresponding, respectively, to positively charged, negatively charged, and nearly neutral CFL strangelets. The charge to baryon number of the positively charged strangelets is smaller than the previous result, while the charge of the negatively charged strangelets is nearly proportional in magnitude to the cubic-root of the baryon number. However, the positively charged strangelets are more stable compared to the other two solutions.Comment: 11 pages,7 figures, Accepted for publication in Int. J. Mod. Phys.
    • …
    corecore