1,110 research outputs found

    An Algebraic Model For Quorum Systems

    Get PDF
    Quorum systems are a key mathematical abstraction in distributed fault-tolerant computing for capturing trust assumptions. A quorum system is a collection of subsets of all processes, called quorums, with the property that each pair of quorums have a non-empty intersection. They can be found at the core of many reliable distributed systems, such as cloud computing platforms, distributed storage systems and blockchains. In this paper we give a new interpretation of quorum systems, starting with classical majority-based quorum systems and extending this to Byzantine quorum systems. We propose an algebraic representation of the theory underlying quorum systems making use of multivariate polynomial ideals, incorporating properties of these systems, and studying their algebraic varieties. To achieve this goal we will exploit properties of Boolean Groebner bases. The nice nature of Boolean Groebner bases allows us to avoid part of the combinatorial computations required to check consistency and availability of quorum systems. Our results provide a novel approach to test quorum systems properties from both algebraic and algorithmic perspectives.Comment: 15 pages, 3 algorithm

    X-ray haloes and star formation in early-type galaxies

    Full text link
    High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity (LxL_\mathrm{x}) and temperature (TxT_\mathrm{x}) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is >5> 5 Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning LxL_\mathrm{x} and TxT_\mathrm{x} of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.Comment: 20 pages, 10 figures, 5 tables. Accepted for publication in MNRA

    The effects of stellar dynamics on the X-ray emission of flat early-type galaxies

    Full text link
    Observational and numerical studies gave hints that the hot gaseous haloes of ETGs may be sensitive to the galaxy internal kinematics. By using high resolution 2D hydro simulations, and realistic two-component (stars plus dark matter) axisymmetric galaxy models, we study the evolution of the hot haloes in a suite of flat ETGs of fixed mass distribution, but with variable amounts of azimuthal velocity dispersion and rotational support, including the possibility of a counter-rotating inner stellar disc. The hot halo is fed by stellar mass losses and heated by SNIa explosions and thermalization of stellar motions. We measure the value of the thermalization parameter gamma (the ratio between the heating due to the relative velocity between the stellar streaming and the ISM bulk flow, and the heating attainable by complete thermalization of the stellar streaming motions). We find that 1) the X-ray emission and the average temperature are larger in fully velocity dispersion supported systems; 2) 0.1<gamma<0.2 for isotropic rotators (with a trend for being larger for lower dark mass models); 3) systems that are isotropic rotators at large radii with an inner counter-rotating disc, or fully velocity dispersion supported systems with an inner rotating disc, have gamma=1, again with a trend to increase for lower dark mass contents. We also find that the lower X-ray luminosities of isotropic rotators cannot be explained just by their low gamma, but are due to the complicated flow structure, consequence of the angular momentum stored at large radii. X-ray emission weighted temperatures and luminosities nicely match observed values; the X-ray isophotes are boxy in case of significant galaxy rotation. Overall, it is found that rotation has an important role to explain the observational result that more rotationally supported ETGs on average show a lower X-ray emission [abridged].Comment: 22 pages, 13 figures, accepted for publication in MNRAS. Comments welcom

    The Effects of Galaxy Shape and Rotation on the X-ray Haloes of Early-Type Galaxies

    Full text link
    We present a detailed diagnostic study of the observed temperatures of the hot X-ray coronae of early-type galaxies. By extending the investigation carried out in Pellegrini (2011) with spherical models, we focus on the dependence of the energy budget and temperature of the hot gas on the galaxy structure and internal stellar kinematics. By solving the Jeans equations we construct realistic axisymmetric three-component galaxy models (stars, dark matter halo, central black hole) with different degrees of flattening and rotational support. The kinematical fields are projected along different lines of sight, and the aperture velocity dispersion is computed within a fraction of the circularized effective radius. The model parameters are chosen so that the models resemble real ETGs and lie on the Faber-Jackson and Size-Luminosity relations. For these models we compute T_* (the stellar heating contribution to the gas injection temperature) and T_gm (the temperature equivalent of the energy required for the gas escape). In particular, different degrees of thermalisation of the ordered rotational field of the galaxy are considered. We find that T_* and T_gm can vary only mildly due to a pure change of shape. Galaxy rotation instead, when not thermalised, can lead to a large decrease of T_*; this effect can be larger in flatter galaxies that can be more rotationally supported. Recent temperature measurements T_x, obtained with Chandra, are larger than, but close to, the T_* values of the models, and show a possible trend for a lower T_x in flatter and more rotationally supported galaxies; this trend can be explained by the lack of thermalisation of the whole stellar kinetic energy. Flat and rotating galaxies also show lower L_x values, and then a lower gas content, but this is unlikely to be due to the small variation of T_gm found here for them.Comment: 16 pages, 7 figures, accepted for publication in MNRA

    Disk dynamics and the X-ray emission of S0 and flat early-type galaxies

    Full text link
    With 2D hydrodynamical simulations, we study the evolution of the hot gas flows in early-type galaxies, focussing on the effects of galaxy rotation on the thermal and dynamical status of the ISM. The galaxy is modelled as a two-component axisymmetric system (stars and dark matter), with a variable amount of azimuthal velocity dispersion and rotational support; the presence of a counter rotating stellar disk is also considered. It is found that the ISM of the rotationally supported (isotropic) model is more prone to thermal instabilities than the fully velocity dispersion counterpart, while its ISM temperature and X-ray luminosity are lower. The model with counter rotation shows an intermediate behaviour.Comment: 2 pages, 2 figures. Proceedings of the International Conference "X-ray Astronomy: towards the next 50 years!", Milan, 1-5 Oct 201

    Asymptotic expansion for some local volatility models arising in finance

    Get PDF
    In this paper we study the small noise asymptotic expansions for certain classes of local volatility models arising in finance. We provide explicit expressions for the involved coefficients as well as accurate estimates on the remainders. Moreover, we perform a detailed numerical analysis, with accuracy comparisons, of the obtained results by mean of the standard Monte Carlo technique as well as exploiting the polynomial Chaos Expansion approach

    The stellar initial mass function of early type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS3D^{\rm 3D} and Sloan Lens ACS galaxies

    Full text link
    We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens ACS (SLACS) Survey. We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed \textit{HST} photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ\sigma) within the SDSS fibers. Comparing the dynamically-derived stellar mass-to-light ratios (M/L)dyn(M_*/L)_{\rm dyn}, obtained for an assumed halo slope ρhr1\rho_{\rm h}\propto r^{-1}, to the stellar population ones (M/L)pop(M_*/L)_{\rm pop}, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high σ\sigma galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ\sigma for both the SLACS and \ATLAS samples, which explore quite different σ\sigma ranges. The two samples are highly complementary, the first being essentially σ\sigma selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form logα=(0.38±0.04)×log(σe/200km s1)+(0.06±0.01)\log\alpha =(0.38\pm0.04)\times\log(\sigma_{\rm e}/200\,\mathrm{km~s}^{-1})+(-0.06\pm0.01), where α=(M/L)dyn/(M/L)pop\alpha=(M_*/L)_{\rm dyn}/(M_*/L)_{\rm pop} and σe\sigma_{\rm e} is the luminosity averaged σ\sigma within one effective radius ReR_{\rm e}. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe90270km s1\sigma_{\rm e}\approx90-270\,\mathrm{km~s}^{-1}.Comment: 18 pages, 8 figures. Accepted for publication in MNRA

    Human posture tracking and classification through stereo vision and 3D model matching

    Get PDF
    The ability of detecting human postures is particularly important in several fields like ambient intelligence, surveillance, elderly care, and human-machine interaction. This problem has been studied in recent years in the computer vision community, but the proposed solutions still suffer from some limitations due to the difficulty of dealing with complex scenes (e.g., occlusions, different view points, etc.). In this article, we present a system for posture tracking and classification based on a stereo vision sensor. The system provides both a robust way to segment and track people in the scene and 3D information about tracked people. The proposed method is based on matching 3D data with a 3D human body model. Relevant points in the model are then tracked over time with temporal filters and a classification method based on hidden Markov models is used to recognize principal postures. Experimental results show the effectiveness of the system in determining human postures with different orientations of the people with respect to the stereo sensor, in presence of partial occlusions and under different environmental conditions

    Living with Keratinocytes

    Get PDF
    A feature distinguishing human hematopoietic and epithelial stem cells from other equally fascinating stem cells is perhaps their easier translation into a clinical setting. We have devoted nearly our entire scientific career in trying to turn our understanding of&nbsp;epithelial stem cell biology into something that could help people suffering from virtually untreatable diseases of squamous epithelia. We have done that as a team, together with our numerous students, postdocs, technicians and valuable collaborators, clinicians, regulators, and, lately, industrial partners. We had rewarding successes and burning failures, but we always did our best. This award, given by friends and colleagues deserving it more than us, has been the most important recognition of our work. Below, we summarize our story
    corecore