128 research outputs found
Using quantum key distribution for cryptographic purposes: a survey
The appealing feature of quantum key distribution (QKD), from a cryptographic
viewpoint, is the ability to prove the information-theoretic security (ITS) of
the established keys. As a key establishment primitive, QKD however does not
provide a standalone security service in its own: the secret keys established
by QKD are in general then used by a subsequent cryptographic applications for
which the requirements, the context of use and the security properties can
vary. It is therefore important, in the perspective of integrating QKD in
security infrastructures, to analyze how QKD can be combined with other
cryptographic primitives. The purpose of this survey article, which is mostly
centered on European research results, is to contribute to such an analysis. We
first review and compare the properties of the existing key establishment
techniques, QKD being one of them. We then study more specifically two generic
scenarios related to the practical use of QKD in cryptographic infrastructures:
1) using QKD as a key renewal technique for a symmetric cipher over a
point-to-point link; 2) using QKD in a network containing many users with the
objective of offering any-to-any key establishment service. We discuss the
constraints as well as the potential interest of using QKD in these contexts.
We finally give an overview of challenges relative to the development of QKD
technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special
issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8
A Novel approach to quality-of-service provisioning in trusted relay quantum key distribution networks
In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions
Field test of a continuous-variable quantum key distribution prototype
We have designed and realized a prototype that implements a
continuous-variable quantum key distribution protocol based on coherent states
and reverse reconciliation. The system uses time and polarization multiplexing
for optimal transmission and detection of the signal and phase reference, and
employs sophisticated error-correction codes for reconciliation. The security
of the system is guaranteed against general coherent eavesdropping attacks. The
performance of the prototype was tested over preinstalled optical fibres as
part of a quantum cryptography network combining different quantum key
distribution technologies. The stable and automatic operation of the prototype
over 57 hours yielded an average secret key distribution rate of 8 kbit/s over
a 3 dB loss optical fibre, including the key extraction process and all quantum
and classical communication. This system is therefore ideal for securing
communications in metropolitan size networks with high speed requirements.Comment: 15 pages, 6 figures, submitted to New Journal of Physics (Special
issue on Quantum Cryptography
Field test of quantum key distribution in the Tokyo QKD Network
A novel secure communication network with quantum key distribution in a
metropolitan area is reported. Different QKD schemes are integrated to
demonstrate secure TV conferencing over a distance of 45km, stable long-term
operation, and application to secure mobile phones.Comment: 21 pages, 19 figure
Controlling passively-quenched single photon detectors by bright light
Single photon detectors based on passively-quenched avalanche photodiodes can
be temporarily blinded by relatively bright light, of intensity less than a
nanowatt. I describe a bright-light regime suitable for attacking a quantum key
distribution system containing such detectors. In this regime, all single
photon detectors in the receiver Bob are uniformly blinded by continuous
illumination coming from the eavesdropper Eve. When Eve needs a certain
detector in Bob to produce a click, she modifies polarization (or other
parameter used to encode quantum states) of the light she sends to Bob such
that the target detector stops receiving light while the other detector(s)
continue to be illuminated. The target detector regains single photon
sensitivity and, when Eve modifies the polarization again, produces a single
click. Thus, Eve has full control of Bob and can do a successful
intercept-resend attack. To check the feasibility of the attack, 3 different
models of passively-quenched detectors have been tested. In the experiment, I
have simulated the intensity diagrams the detectors would receive in a real
quantum key distribution system under attack. Control parameters and side
effects are considered. It appears that the attack could be practically
possible.Comment: Experimental results from a third detector model added. Minor
corrections and edits made. 11 pages, 10 figure
Topological optimization of quantum key distribution networks
A Quantum Key Distribution (QKD) network is an infrastructure that allows the
realization of the key distribution cryptographic primitive over long distances
and at high rates with information-theoretic security. In this work, we
consider QKD networks based on trusted repeaters from a topology viewpoint, and
present a set of analytical models that can be used to optimize the spatial
distribution of QKD devices and nodes in specific network configurations in
order to guarantee a certain level of service to network users, at a minimum
cost. We give details on new methods and original results regarding such cost
minimization arguments applied to QKD networks. These results are likely to
become of high importance when the deployment of QKD networks will be addressed
by future quantum telecommunication operators. They will therefore have a
strong impact on the design and requirements of the next generation of QKD
devices.Comment: 25 pages, 4 figure
Feasibility of quantum key distribution through dense wavelength division multiplexing network
In this paper, we study the feasibility of conducting quantum key
distribution (QKD) together with classical communication through the same
optical fiber by employing dense-wavelength-division-multiplexing (DWDM)
technology at telecom wavelength. The impact of the classical channels to the
quantum channel has been investigated for both QKD based on single photon
detection and QKD based on homodyne detection. Our studies show that the latter
can tolerate a much higher level of contamination from the classical channels
than the former. This is because the local oscillator used in the homodyne
detector acts as a "mode selector" which can suppress noise photons
effectively. We have performed simulations based on both the decoy BB84 QKD
protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While
the former cannot tolerate even one classical channel (with a power of 0dBm),
the latter can be multiplexed with 38 classical channels (0dBm power each
channel) and still has a secure distance around 10km. Preliminary experiment
has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure
The Security of Practical Quantum Key Distribution
Quantum key distribution (QKD) is the first quantum information task to reach
the level of mature technology, already fit for commercialization. It aims at
the creation of a secret key between authorized partners connected by a quantum
channel and a classical authenticated channel. The security of the key can in
principle be guaranteed without putting any restriction on the eavesdropper's
power.
The first two sections provide a concise up-to-date review of QKD, biased
toward the practical side. The rest of the paper presents the essential
theoretical tools that have been developed to assess the security of the main
experimental platforms (discrete variables, continuous variables and
distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change
Path Selection for Quantum Repeater Networks
Quantum networks will support long-distance quantum key distribution (QKD)
and distributed quantum computation, and are an active area of both
experimental and theoretical research. Here, we present an analysis of
topologically complex networks of quantum repeaters composed of heterogeneous
links. Quantum networks have fundamental behavioral differences from classical
networks; the delicacy of quantum states makes a practical path selection
algorithm imperative, but classical notions of resource utilization are not
directly applicable, rendering known path selection mechanisms inadequate. To
adapt Dijkstra's algorithm for quantum repeater networks that generate
entangled Bell pairs, we quantify the key differences and define a link cost
metric, seconds per Bell pair of a particular fidelity, where a single Bell
pair is the resource consumed to perform one quantum teleportation. Simulations
that include both the physical interactions and the extensive classical
messaging confirm that Dijkstra's algorithm works well in a quantum context.
Simulating about three hundred heterogeneous paths, comparing our path cost and
the total work along the path gives a coefficient of determination of 0.88 or
better.Comment: 12 pages, 8 figure
- …