3,612 research outputs found

    Einstein-Weyl structures corresponding to diagonal K\"ahler Bianchi IX metrics

    Get PDF
    We analyse in a systematic way the four dimensionnal Einstein-Weyl spaces equipped with a diagonal K\"ahler Bianchi IX metric. In particular, we show that the subclass of Einstein-Weyl structures with a constant conformal scalar curvature is the one with a conformally scalar flat - but not necessarily scalar flat - metric ; we exhibit its 3-parameter distance and Weyl one-form. This extends previous analysis of Pedersen, Swann and Madsen , limited to the scalar flat, antiself-dual case. We also check that, in agreement with a theorem of Derdzinski, the most general conformally Einstein metric in the family of biaxial K\"ahler Bianchi IX metrics is an extremal metric of Calabi, conformal to Carter's metric, thanks to Chave and Valent's results.Comment: 15 pages, Latex file, minor modifications, to be published in Class. Quant. Gra

    Hypsometry and Volume of the Arctic Ocean and Its Constituent Seas

    Get PDF
    This paper presents an analysis of the Arctic Ocean and its constituent seas for seafloor area distribution versus depth and ocean volume. The bathymetry from the International Bathymetric Chart of the Arctic Ocean (IBCAO) is used together with limits defining this ocean and its constituent seas from the International Hydrographic Organization (IHO) as well as redefined limits constructed to confine the seas to the shallow shelves. IBCAO is a bathymetric grid model with a resolution of 2.5 x 2.5 km, which significantly improved the portrayal of the Arctic Ocean seafloor through incorporation of newly released bathymetric data including echo soundings from U.S. and British navies, scientific nuclear submarine cruises, and icebreaker cruises. This analysis of seafloor area and ocean volume is the first for the Arctic Ocean based on this new and improved portrayal of the seafloor as represented by IBCAO. The seafloor area and volume are calculated for different depths starting from the present sea level and progressing in increments of 10 m to a depth of 500 m and in increments of 50 m from 550 m down to the deepest depth within each of the analyzed seas. Hypsometric curves expressed as simple histograms of the frequencies in different depth bins and depth plotted against cumulative area for each of the analyzed seas are presented. The area and volume calculations show that the entire IHO-defined Arctic Ocean makes up 4.3% of the total ocean area but only 1.4% of the volume. Furthermore, the IHO Arctic Ocean is the shallowest (mean depth 1201 m) of all the major oceans and their adjacent seas. The continental shelf area, from the coasts out to the shelf break, make up as much as 52.9% of the total area in the Arctic Ocean, defined in this work as consisting of the oceanic deep Arctic Ocean Basin; the broad continental shelves of the Barents, Kara, Laptev, East Siberian, Chukchi, and Beaufort Seas; the White Sea; and the narrow continental shelf off both the Canadian Arctic Archipelago and northern Greenland. This result indicates that the Arctic Ocean has significantly larger continental shelves compared with all the other oceans, where previous studies show that the proportion of shelves, from the coasts out to the foot of the continental slopes, only ranges between about 9.1 and 17.7%. Furthermore, the derived hypsometric curves show that most of the Arctic Ocean shelf seas besides the Barents Sea, Beaufort Sea, and the shelf off northern Greenland have a similar shape, with the largest seafloor area between 0 and 50 m. The East Siberian and Laptev seas, in particular, show area distributions concentrated in this shallow depth range, and together with the Chukchi Sea they form a large flat shallow shelf province composing as much as 22% of the entire Arctic Ocean area but only 1% of the volume. This implies that the circulation in the Arctic Ocean might be very sensitive to eustatic sea level changes. One of the aims with this work is to make up-to-date high-resolution area and volume calculations for the Arctic Ocean at various depths available for download

    Health effects and wind turbines: A review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wind power has been harnessed as a source of power around the world. Debate is ongoing with respect to the relationship between reported health effects and wind turbines, specifically in terms of audible and inaudible noise. As a result, minimum setback distances have been established world-wide to reduce or avoid potential complaints from, or potential effects to, people living in proximity to wind turbines. People interested in this debate turn to two sources of information to make informed decisions: scientific peer-reviewed studies published in scientific journals and the popular literature and internet.</p> <p>Methods</p> <p>The purpose of this paper is to review the peer-reviewed scientific literature, government agency reports, and the most prominent information found in the popular literature. Combinations of key words were entered into the Thomson Reuters Web of Knowledge<sup>SM </sup>and the internet search engine Google. The review was conducted in the spirit of the evaluation process outlined in the Cochrane Handbook for Systematic Reviews of Interventions.</p> <p>Results</p> <p>Conclusions of the peer reviewed literature differ in some ways from those in the popular literature. In peer reviewed studies, wind turbine annoyance has been statistically associated with wind turbine noise, but found to be more strongly related to visual impact, attitude to wind turbines and sensitivity to noise. To date, no peer reviewed articles demonstrate a direct causal link between people living in proximity to modern wind turbines, the noise they emit and resulting physiological health effects. If anything, reported health effects are likely attributed to a number of environmental stressors that result in an annoyed/stressed state in a segment of the population. In the popular literature, self-reported health outcomes are related to distance from turbines and the claim is made that infrasound is the causative factor for the reported effects, even though sound pressure levels are not measured.</p> <p>Conclusions</p> <p>What both types of studies have in common is the conclusion that wind turbines can be a source of annoyance for some people. The difference between both types is the reason for annoyance. While it is acknowledged that noise from wind turbines can be annoying to some and associated with some reported health effects (e.g., sleep disturbance), especially when found at sound pressure levels greater than 40 db(A), given that annoyance appears to be more strongly related to visual cues and attitude than to noise itself, self reported health effects of people living near wind turbines are more likely attributed to physical manifestation from an annoyed state than from wind turbines themselves. In other words, it appears that it is the change in the environment that is associated with reported health effects and not a turbine-specific variable like audible noise or infrasound. Regardless of its cause, a certain level of annoyance in a population can be expected (as with any number of projects that change the local environment) and the acceptable level is a policy decision to be made by elected officials and their government representatives where the benefits of wind power are weighted against their cons. Assessing the effects of wind turbines on human health is an emerging field and conducting further research into the effects of wind turbines (and environmental changes) on human health, emotional and physical, is warranted.</p

    Potential loss of nutrients from different rearing strategies for fattening pigs on pasture

    Get PDF
    Nutrient load and distribution on pasture were investigated with fattening pigs that: 1) spend a proportion of or their entire life on pasture, 2) were fed either restrictively or ad libitum, and 3) were weaned at different times of the year. The N and P retention in pigs decreased the longer they were kept on pasture. The contents of soil inorganic N and exchangeable K were significantly raised compared to the soil outside the enclosures but with no differences between treatments. Pig grazing did not affect extractable soil P. Regular moving of huts, feeding and water troughs was effective in ensuring that nutrients were more evenly distributed on the paddocks. Grass cover, as determined by spectral reflectance, was not related to the experimental treatments but only to time of year. During spring and summer, grass was present in parts of the paddocks, whereas during autumn and winter the pigs kept grass cover below 10%. Fattening pigs on pasture carries a high risk of nutrient loss and it is concluded that the most environmentally acceptable way of keeping fattening pigs on pasture involves a combination of reduced dietary N intake, reduced stocking rate and seasonal rather than all year production

    Effect of smoking status on the efficacy of the SMART regimen in high risk asthma

    Get PDF
    Background and objective: The optimal management of people with asthma with a significant smoking history is uncertain. The aim of this study was to determine whether the efficacy/safety profile of single combination inhaled corticosteroid (ICS)/long acting beta-agonist (LABA) inhaler maintenance and reliever therapy is influenced by smoking status. Methods: We undertook secondary analyses from an open-label 24-week randomized study of 303 high risk adult asthma patients randomized to budesonide/formoterol 200/6-µg-metred dose inhaler for maintenance (two actuations twice daily) and either budesonide/formoterol 200/6-µg-metred dose inhaler one actuation (‘single ICS/LABA maintenance and reliever therapy (SMART)’ regimen) or salbutamol 100 µg 1–2 actuations for symptom relief (‘Standard’ regimen). Smoking status was classified in to three groups, as ‘current’, ‘ex’ or ‘never’, and a smoking/treatment interaction term tested for each outcome variable. The primary outcome variable was number of participants with at least one severe exacerbation. Results: There were 59 current, 97 ex and 147 never smokers included in the analyses. The smoking status/treatment interaction term was not statistically significant for any of the outcome measures. With adjustment for smoking status, the number of participants with severe exacerbations was lower with the SMART regimen (OR 0.45, 95% CI: 0.26–0.77, P = 0.004; P value for interaction between smoking status and treatment 0.29). Conclusion: We conclude that the favourable safety/efficacy profile of the SMART regimen applies to patients with high risk asthma, irrespective of smoking status

    Curriculum Vitae

    Get PDF
    Kort biografi for Prof. David Budtz PedersenShort bio for Prof. David Budtz Pederse

    Explicit wave overtopping formula for mound breakwaters with crown walls using CLASH neural network-derived data

    Full text link
    Based on the Crest Level Assessment of Coastal Structures (CLASH) Neural Network Overtopping prediction method, a new 16-parameter overtopping estimator (Q6) was developed for conventional mound breakwaters with crown walls, both with and without toe berms. Q6 was built up using the overtopping estimations given by the CLASH Neural Network and checked using the CLASH database. Q6 was compared to other conventional overtopping formulas, and the Q6 obtained the lowest prediction errors. Q6 provides overtopping predictions similar to the CLASH Neural Network for conventional mound breakwaters but using only six explanatory dimensionless variables (Rc=Hm0; Ir; Rc=h;Gc=Hm0; Ac=Rc, and a toe berm variable based on Rc=h) and two reduction factors (g f and g b ). Q6 describes explicit relationships between input variables and overtopping discharge, and hence it facilitates use in engineering design to identify costeffective solutions and to quantify the influence of variations in wave and structural parameters.The authors are grateful for financial support from the Spanish Ministerio de Economia y Competitividad (Grant BIA2012-33967). The first author was funded through the FPU program (Formacion del Profesorado Universitario, Grant AP2010-4366) by the Spanish Ministerio de Educacion, Cultura y Deporte. The authors also thank Debra Westall for revising the manuscript.Molines, J.; Medina, JR. (2016). Explicit wave overtopping formula for mound breakwaters with crown walls using CLASH neural network-derived data. Journal of Waterway Port Coastal and Ocean Engineering. 142(3). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000322S142

    A global dataset of seaweed net primary productivity

    Get PDF
    Net primary productivity (NPP) plays a pivotal role in the global carbon balance but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 246 seaweed taxa at 429 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m(−2) yr(−1)) and are accompanied by detailed taxonomic and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle
    • …
    corecore