3 research outputs found

    An Empirical Critique of On-Demand Routing Protocols against Rushing Attack in MANET

    Get PDF
    Over the last decade, researchers hadĀ  proposed numerousĀ  mobile ad hoc routing protocols for which are operate in an on-demand way, as standard on-demand routing protocols such as AODV, DSR and TORA, etc., have been shown to often have faster reaction time andĀ  lower overhead than proactive protocols. However, the openness of the routing environment and the absence of centralized system and infrastructure make them exposed to security attacks in large extent.Ā  In particular, one such kind of attacks is rushing attack, which is mostly hard to detect due to their inherited properties, that alters the network statistics radically. In this paper, we modeled a rushing attack which is a powerful attack that exploits the weaknesses of the secure routing protocols. Moreover, to know the weakness and strength of these protocols, it is necessary to test their performance in hostile environments. Subsequently, the performance is measured with the various metrics, some ot them are average throughput, packet delivery ratio, average end-to-end delay and etc., to compare and evaluate their performance

    Designing an Adversarial Model Against Reactive and Proactive Routing Protocols in MANETS: A Comparative Performance Study

    Get PDF
    Mobile ad-hoc networks are self-organized infrastructure less networks that consists of mobile nodes, which are capable of maintaining and forming the network by themselves. Recently, researchers are designed several routing protocols on these networks. However, these routing protocols are more vulnerable to attacks from the intruders, which can easily paralyze the operation of the network due to its inherited characteristics of MANETS. One such type of attack is wormhole attack. Because of its severity, the wormhole attack has attracted a great deal of attention in the research community. This paper compares reactive and proactive routing protocols in adversarial environment. Specifically, wormhole attack is applied to these routing protocols to evaluate its performance through simulation. Comprehensively the results shows the comparative performance of these protocols against wormhole attack is hard to detect and easy to implement
    corecore