35 research outputs found
ICTV Virus Taxonomy Profile: Filoviridae.
Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
Taxonomy of the order Mononegavirales: second update 2018.
In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Taxonomy of the order Mononegavirales: update 2019.
In February 2019, following the annual taxon ratification vote, the order Mononegavirales was amended by the addition of four new subfamilies and 12 new genera and the creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018
In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the
recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family
Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
and summarizes additional taxonomic proposals that may affect the order in the near future
New filovirus disease classification and nomenclature.
The recent large outbreak of Ebola virus disease (EVD) in Western Africa resulted in greatly increased accumulation of human genotypic, phenotypic and clinical data, and improved our understanding of the spectrum of clinical manifestations. As a result, the WHO disease classification of EVD underwent major revision
2021 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales
peer reviewedIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and mended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, yriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and ammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/
or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales
In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. © 2020, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)
55 Pág.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe
Małe oczyszczalnie ścieków - systemy hydrobotaniczne w ochronie środowiska
The paper presents results of research concerning operating of fi ve small wastewater treatment plants working in two different technologies: hydrobotanical wastewater treatment plant and constructed wetland. Each object was designed for the treatment of domestic sewage after preliminary mechanical treatment in a septic tank. Hydrobotanical wastewater treatment plants and one of constructed wetland beds were built for treating sewage produced in educational institutions and resort. In the article attention is paid to possibility of exceeding the maximum allowable concentration of pollutants for three main indicators of pollution: BOD5, COD, and total suspension. The reduction of these indices is required by the Regulation of the Minister of Environment [14] for wastewater treatment plants with PE < 2000. In addition, the paper presents the effects of wastewater treatment to reduce biogens. The best quality of outfl ow was reached by outfl ows from constructed wetland treatment plants. None of the observed objects fulfi lled the requirements in terms of allowable concentrations for total suspension. The most effective were objects operating in technology of "constructed wetland".W pracy przedstawiono wyniki badań dotyczące pracy małych pięciu oczyszczalni ścieków pracujących w dwóch technologiach: oczyszczalnie hydrobotaniczne oraz constructed wetland. Każdy z obiektów przeznaczony był do oczyszczania ścieków bytowych po wstępnym mechanicznym oczyszczaniu w osadniku gnilnym. Oczyszczalnie hydrobotaniczne oraz jeden z obiektów constructed wetland wybudowano w celu oczyszczania ścieków pochodzących z placówek oświatowych, pozostałe złoże gruntowo-trzcinowe oczyszczało ścieki z ośrodka wypoczynkowego. W artykule zwrócono szczególną uwagę na możliwość przekroczenia maksymalnego dopuszczalnego stężenia zanieczyszczeń wg obowiązujących w Polsce przepisów, dla trzech podstawowych wskaźników zanieczyszczeń: BZT5, ChZT oraz zawiesiny ogólnej. Redukcja tych indeksów wymagana jest Rozporządzeniem MŚ [14] dla oczyszczalni o RLM < 2000. Ponadto w pracy przedstawiono również efekty oczyszczania na rzecz redukcji biogenów. Najlepszą jakością charakteryzowały się odpływy z oczyszczalni pracujących w technologii constructed wetland. Natomiast żaden z obserwowanych obiektów nie spełniał wymogów pod względem dopuszczalnych stężeń dla zawiesiny ogólnej. Najskuteczniej oczyszczały ścieki obiekty pracujące w technologii "constructed wetland"