61 research outputs found

    Determination of the optimum base characteristics for pavements

    Get PDF
    In recent years, it has become apparent that the design and maintenance of pavement drainage extends the service life of pavements. Most pavement structures now incorporate subsurface layers, part of whose function is to drain away excess water, which can be extremely deleterious to the life of the pavement. However, aggregate materials for pavement bases must be carefully selected and properly constructed to provide adequate permeability and stability as well. To assure the effectiveness of such drainage layers after they have been spread and compacted, simple, rapid, in-situ permeability and stability testing and end-result specification are needed. This report includes conclusions and recommendations related to four main study objectives: (1) Determine the optimal range for in-place stability and in-place permeability based on Iowa aggregate sources; (2) Evaluate the feasibility of an air permeameter for determining the permeability of open and well-graded drainage layers in-situ; (3) Develop reliable end-result quality control/quality assurance specifications for stability and permeability; (4) Refine aggregate placement and construction methods to optimize uniformity. An Air Permeameter Test (APT) device was developed during this study for rapid measurement of in place permeability of pavement bases. Dynamic Cone Penetrometer (DCP), Clegg Hammer, and GeoGauge vibration tests were performed for in-place stability measurements. Significant spatial variation of most parameters is observed over the final compacted base layer. To achieve the PCC pavement design assumptions and by considering the spatial variability occurring in field, a target CBR of 15% and target permeability of 4 cm/sec and 0.84 cm/sec to achieve 90% and 50% drainage, respectively, is recommended for QC/QA. A strong influence of fines content and aggregate type on strength, stiffness, and permeability is observed. Construction operations are found to contribute to spatial variability in field. Alternate construction procedures and equipment are recommended to minimize this variation

    Investigation of roller-integrated compaction monitoring and in-situ testing technologies for characterization of pavement foundation layers

    Get PDF
    The performance and durability of pavement structures depend heavily on the pavement foundation layer support conditions. Construction of pavement foundation layers with adequate support capacities require use of proper construction methods, and following proper quality control (QC) and quality assurance (QA) procedures. There has been growing interest in the United States for incorporating roller-integrated compaction monitoring technologies and various in-situ strength/stiffness based test measurements (e.g., deflectometers, cone penetration tests, etc) into earthwork construction QC/QA practice. To aid in effective implementation of these different technologies, field investigations are conducted as part of this research on a wide range of granular and cohesive soils. Primary objectives of this thesis are to: (a) investigate factors influencing light weight deflectometer test measurements and relationships with conventionally used modulus measurements, (b) analyze spatially referenced roller-integrated compaction measurements (RICM) using geostatistical methods to characterize non-uniformity and develop methods that can potentially improve process control during construction, (c) develop correlations between RICM measurements and different conventionally used in-situ modulus test measurements, and (d) develop an understanding on factors influencing these correlations in a mechanistic stand point

    Optimizing Pavement Base, Subbase, and Subgrade Layers for Cost and Performance of Local Roads

    Get PDF
    This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time

    Report of the 4th Workshop for Technology Transfer for Intelligent Compaction Consortium

    Get PDF
    This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop

    Low-Cost Rural Surface Alternatives: Tech Transfer Summary

    Get PDF
    Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials

    Low-Cost Rural Surface Alternatives: Literature Review and Recommendations

    Get PDF
    Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials

    Cement Stabilization of Embankment Materials

    Get PDF
    Embankment subgrade soils in Iowa are generally rated as fair to poor as construction materials. These soils can exhibit low bearing strength, high volumetric instability, and freeze/thaw or wet/dry durability problems. Cement stabilization offers opportunities to improve these soils conditions. The objective of this study was to develop relationships between soil index properties, unconfined compressive strength and cement content. To achieve this objective, a laboratory study was conducted on 28 granular and non-granular materials obtained from 9 active construction sites in Iowa. The materials consisted of glacial till, loess, and alluvium sand. Type I/II portland cement was used for stabilization. Stabilized and unstabilized specimens were prepared using Iowa State University 2 in. by 2 in. compaction apparatus. Specimens were prepared, cured, and tested for unconfined compressive strength (UCS) with and without vacuum saturation. Percent fines content (F200), AASHTO group index (GI), and Atterberg limits were tested before and after stabilization. The results were analyzed using multi-variate statistical analysis to assess influence of the various soil index properties on post-stabilization material properties. Results indicated that F200, liquid limit, plasticity index, and GI of the materials generally decreased with increasing cement content. The UCS of the stabilized specimens increased with increasing cement content, as expected. The average saturated UCS of the unstabilized materials varied between 0 and 57 psi. The average saturated UCS of stabilized materials varied between 44 and 287 psi at 4% cement content, 108 and 528 psi at t 8% cement content, and 162 and 709 psi at 12% cement content. The UCS of the vacuum saturated specimens was on average 1.5 times lower than that of the unsaturated specimens. Multi-variate statistical regression models are provided in this report to predict F200, plasticity index, GI, and UCS after treatment, as a function of cement content and soil index properties

    Embankment Quality and Assessment of Moisture Control Implementation

    Get PDF
    A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA

    Iowa DOT Intelligent Compaction Research and Implementation—Phase I

    Get PDF
    The Iowa Department of Transportation Intelligent Compaction Research and Implementation was initiated in summer 2009. Three field demonstration projects were conducted in Iowa as part of Phase I of this research program to evaluate three different IC measurement technologies: (1) machine drive power (MDP) measurement technology on Caterpillar CP56 padfoot roller, (2) continuous compaction value (CCV) technology on Sakai SW880 dual vibratory smooth drum asphalt roller, and (3) compaction meter value (CMV) technology on Volvo SD116DX smooth drum vibratory roller. The main objectives of the project include: evaluating the effectiveness of the IC measurement values (IC-MVs) in assessing the compaction quality of cohesive subgrade materials, granular base/subbase materials, and HMA materials, developing project specific correlations between IC-MVs and various conventionally used in-situ point measurements in earthwork quality control (QC) and quality assurance (QA) practice and HMA construction, evaluating the advantages of using the IC technology for production compaction operations, obtaining data to evaluate future IC specifications, and developing content for future educational and training materials for Iowa DOT and contractor personnel for effective implementation of the technology in to earthwork and HMA construction practice. This research report presents results obtained from the three demonstration projects along with an overview of the different IC technologies and various QC/QA test methods. Statistical regression analysis was performed to evaluate correlations between IC-MVs and various in-situ test measurements (e.g., dry unit weight, moisture content, modulus, California bearing ratio, temperature (for HMA)). Comparatively, modulus was better correlated with IC-MVs compared to dry unit weight. Geostatistical analysis methods were used to assess “uniformity” of the spatially referenced IC measurements. Results from this study were used to develop special provision specifications as part of Phase II research program

    Geo-Infrastructure Damage Assessment, Repair and Mitigation Strategies

    Get PDF
    The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways
    • …
    corecore