341 research outputs found

    Optimal Wavelength Selection for Optical Spectroscopy of Hemoglobin and Water within a Simulated Light-Scattering Tissue

    Get PDF
    An algorithm that selects optimal wavelengths for spectral fitting of diffuse light reflectance spectra using a nonnegative least squares method is presented. Oxyhemoglobin, deoxyhemoglobin, and water are considered representative absorbers, but the approach is not constrained or limited by absorber selection provided native basis spectra are available. The method removes wavelengths iteratively from a scattering-modulated absorption matrix by maximizing the product of its singular values and offers considerable improvements over previously published wavelength selection schemes. Resulting wavelength selections are valid for a broad range of optical properties and yield lower RMS errors than other wavelength combinations. The method is easily modified and broadly applicable to tissue optical spectroscopy. Adaptation of the algorithm to select optimal light-emitting diodes for fitting blood is described

    Contrast-Detail Analysis Characterizing Diffuse Optical Fluorescence Tomography Image Reconstruction

    Get PDF
    Contrast-detail analysis is used to evaluate the imaging performance of diffuse optical fluorescence tomography (DOFT), characterizing spatial resolution limits, signal-to-noise limits, and the trade-off between object contrast and size. Reconstructed images of fluorescence yield from simulated noisy data were used to determine the contrast-to-noise ratio (CNR). A threshold of CNR=3 was used to approximate a lowest acceptable noise level in the image, as a surrogate measure for human detection of objects. For objects 0.5 cm inside the edge of a simulated tissue region, the smallest diameter that met this criteria was approximately 1.7 mm, regardless of contrast level, and test field diameter had little impact on this limit. Object depth had substantial impact on object CNR, leading to a limit of 4 mm for objects near the center of a 51-mm test field and 8.5 mm for an 86-mm test field. Similarly, large objects near the edge of both test fields required a minimum contrast of 50% to achieve acceptable image CNR. The minimum contrast for large, centered objects ranged between 50% and 100%. Contrast-detail analysis using human detection of lower contrast limits provides fundamentally important information about the performance of reconstruction algorithms, and can be used to compare imaging performance of different systems

    Characterizing Accuracy of Total Hemoglobin Recovery Using Contrast-Detail Analysis in 3D Image-Guided Near Infrared Spectroscopy with the Boundary Element Method

    Get PDF
    The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm

    Methodology Development for Three-Dimensional MR-Guided Near Infrared Spectroscopy of Breast Tumors

    Get PDF
    Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect the tissue composition. In this paper, the implementation and display of fully 3D MR image-guided NIRS is outlined and demonstrated using in vivo data from three healthy women and a volunteer undergoing neoadjuvant chemotherapy. Additionally, a display feature presented here scales the transparency of the optical images to the sensitivity of the measurements, providing a logical way to incorporate partial volume sets of optical images onto the MR volume. These concepts are demonstrated with 3D data sets using Volview software online

    A Coupled Finite Element-Boundary Element Method for Modeling Diffusion Equation in 3d Multi-Modality Optical Imaging

    Get PDF
    Three dimensional image reconstruction for multi-modality optical spectroscopy systems needs computationally efficient forward solvers with minimum meshing complexity, while allowing the flexibility to apply spatial constraints. Existing models based on the finite element method (FEM) require full 3D volume meshing to incorporate constraints related to anatomical structure via techniques such as regularization. Alternate approaches such as the boundary element method (BEM) require only surface discretization but assume homogeneous or piece-wise constant domains that can be limiting. Here, a coupled finite element-boundary element method (coupled FE-BEM) approach is demonstrated for modeling light diffusion in 3D, which uses surfaces to model exterior tissues with BEM and a small number of volume nodes to model interior tissues with FEM. Such a coupled FE-BEM technique combines strengths of FEM and BEM by assuming homogeneous outer tissue regions and heterogeneous inner tissue regions. Results with FE-BEM show agreement with existing numerical models, having RMS differences of less than 0.5 for the logarithm of intensity and 2.5 degrees for phase of frequency domain boundary data. The coupled FE-BEM approach can model heterogeneity using a fraction of the volume nodes (4-22%) required by conventional FEM techniques. Comparisons of computational times showed that the coupled FE-BEM was faster than stand-alone FEM when the ratio of the number of surface to volume nodes in the mesh (Ns/Nv) was less than 20% and was comparable to stand-alone BEM ( ± 10%)

    Theoretical Premises and Contemporary Optimizations of Microwave Tomography

    Get PDF
    Microwave imaging has long been proposed as an effective means for biomedical applications—breast cancer detection and therapy monitoring being the most prominent because of the endogenous dielectric property contrast between malignant and normal breast tissue. While numerous numerical simulations have been presented demonstrating feasibility, translation to actual physical and clinical implementations have been lacking. In contrast, the Dartmouth team has taken somewhat counterintuitive but fundamentals-based approaches to the problem—primarily addressing the confounding multipath signal corruption problem and exploiting core concepts from the parameter estimation community. In so doing, we have configured a unique system design that is a synergism of both the hardware and software worlds. In this paper, we describe our approaches in the context of competing strategies and suggest rationales for why these techniques work—especially in 2D. Finally, we present data from actual neoadjuvant chemotherapy exams that confirm that our technique is capable of imaging the tumor and also visualizing its progression during treatment

    Comparison of imaging geometries for diffuse optical tomography of tissue

    Get PDF
    Images produced in six different geometries with diffuse optical tomography simulations of tissue have been compared using a finite element-based algorithm with iterative refinement provided by the NewtonRaphson approach. The source-detector arrangements studied include (i) fan-beam tomography, (ii) full reflectance and transmittance tomography, as well as (iii) sub-surface imaging, where each of these three were examined in a circular and a flat slab geometry. The algorithm can provide quantitatively accurate results for all of the tomographic geometries investigated under certain circumstances. For example, quantitatively accurate results occur with sub-surface imaging only when the object to be imaged is fully contained within the diffuse projections. In general the diffuse projections must sample all regions around the target to be characterized in order for the algorithm to recover quantitatively accurate results. Not only is it important to sample the whole space, but maximal angular sampling is required for optimal image reconstruction. Geometries which do not maximize the possible sampling angles cause more noise artifact in the reconstructed images. Preliminary simulations using a mesh of the human brain confirm that optimal images are produced from circularly symmetric source-detector distributions, but that quantitatively accurate images can be reconstructed even with. a sub-surface imaging, although spatial resolution is modest. © 1999 Optical Society of America

    Characterization of an Implicitly Resistively-Loaded Monopole Antenna in Lossy Liquid Media

    Get PDF
    Abstract Microwave tomographic imaging of the breast for cancer detection is a topic of considerable interest because of the potential to exploit the apparent high-dielectric property contrast between normal and malignant tissue. An important component in the realization of an imaging system is the antenna array to be used for signal transmission/detection. The monopole antenna has proven to be useful in our implementation because it can be easily and accurately modeled and can be positioned in close proximity to the imaging target with high-element density when configured in an imaging array. Its frequency response is broadened considerably when radiating in the liquid medium that is used to couple the signals into the breast making it suitable for broadband spectral imaging. However, at higher frequencies, the beam patterns steer further away from the desired horizontal plane and can cause unwanted multipath contributions when located in close proximity to the liquid/air interface. In this paper, we have studied the behavior of these antennas and devised strategies for their effective use at higher frequencies, especially when positioned near the surface of the coupling fluid which is used. The results show that frequencies in excess of 2 GHz can be used when the antenna centers are located as close as 2 cm from the liquid surface

    Receiver Operating Characteristic and Location Analysis of Simulated Near-Infrared Tomography Images

    Get PDF
    Receiver operating characteristic (ROC) analysis was performed on simulated near-infrared tomography images, using both human observer and contrast-to-noise ratio (CNR) computational assessment, for application in breast cancer imaging. In the analysis, a nonparametric approach was applied for estimating the ROC curves. Human observer detection of objects had superior capability to localize the presence of heterogeneities when the objects were small with high contrast, with a minimum detectable threshold of CNR near 3.0 to 3.3 in the images. Human observers were able to detect heterogeneities in the images below a size limit of 4 mm, yet could not accurately find the location of these objects when they were below 10 mm diameter. For large objects, the lower limit of a detectable contrast limit was near 10% increase relative to the background. The results also indicate that iterations of the nonlinear reconstruction algorithm beyond 4 did not significantly improve the human detection ability, and degraded the overall localization ability for the objects in the image, predominantly by increasing the noise in the background. Interobserver variance performance in detecting objects in these images was low, suggesting that because of the low spatial resolution, detection tasks with NIR tomography is likely consistent between human observers

    Fluorescence Tomography Characterization for Sub-Surface Imaging with Protoporphyrin IX

    Get PDF
    Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue
    • …
    corecore