14,326 research outputs found
Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection
Polygonal finite elements generally do not pass the patch test as a result of
quadrature error in the evaluation of weak form integrals. In this work, we
examine the consequences of lack of polynomial consistency and show that it can
lead to a deterioration of convergence of the finite element solutions. We
propose a general remedy, inspired by techniques in the recent literature of
mimetic finite differences, for restoring consistency and thereby ensuring the
satisfaction of the patch test and recovering optimal rates of convergence. The
proposed approach, based on polynomial projections of the basis functions,
allows for the use of moderate number of integration points and brings the
computational cost of polygonal finite elements closer to that of the commonly
used linear triangles and bilinear quadrilaterals. Numerical studies of a
two-dimensional scalar diffusion problem accompany the theoretical
considerations
- …