147 research outputs found

    Resurrecting Brinley Plots for a Novel Use: Meta-Analyses of Functional Brain Imaging Data in Older Adults

    Get PDF
    By plotting response times of young and older adults across a variety of tasks, Brinley spurred investigation and debate into the theory of general cognitive slowing. Though controversial, Brinley plots can assess between-task differences, the impact of increasing task demand, and the relationship between responses in two groups of subjects. Since a relationship exists between response times and the blood-oxygen level dependent (BOLD) signal of functional MRI (fMRI), Brinley's plotting method could be applied as a meta-analysis tool in fMRI studies of aging. Here, fledgling “Peiffer plots” are discussed for their potential impact on understanding general cognitive brain activity in aging. Preliminary results suggest that general cognitive slowing may be localized at the sensorimotor transformation in the precentral gyrus. Although this meta-analysis method is naturally used with imaging studies of aging, theoretically it may be applied to other study pairs (e.g., schizophrenic versus normal) or imaging datasets (e.g., PET)

    Changes in Cognitive State Alter Human Functional Brain Networks

    Get PDF
    The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole-brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation). Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level

    A Cognitive Training Intervention Increases Resting Cerebral Blood Flow in Healthy Older Adults

    Get PDF
    Healthy aging is typically accompanied by some decline in cognitive performance, as well as by alterations in brain structure and function. Here we report the results of a randomized, controlled trial designed to determine the effects of a novel cognitive training program on resting cerebral blood flow (CBF) and gray matter (GM) volume in healthy older adults. Sixty-six healthy older adults participated in 8 weeks of either a training program targeting attention and distractibility or an educational control program. This training program produced significantly larger increases in resting CBF to the prefrontal cortex than the control program. Increases in blood flow were associated with reduced susceptibility to distraction after training, but not with alterations in GM volume. These data demonstrate that cognitive training can improve resting CBF in healthy older adults and that cerebral perfusion rates may be a more sensitive indicator of the benefits of cognitive training than volumetric analyses

    Coping with brief periods of food restriction: mindfulness matters

    Get PDF
    The obesity epidemic had spawned considerable interest in understanding peoples' responses to palatable food cues that are plentiful in obesogenic environments. In this paper we examine how trait mindfulness of older, obese adults may moderate brain networks that arise from exposure to such cues. Nineteen older, obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h. After this brief period of food restriction, they had an fMRI scan in which they were exposed to food cues and then underwent a 5 min recovery period to evaluate brain networks at rest. On one day they consumed a BOOST® liquid meal prior to scanning, whereas on the other day they only consumed water (NO BOOST® condition). We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period. This effect was stronger for the BOOST® than NO BOOST® treatment condition. Older adults low in trait mindfulness did not exhibit this pattern in the DMN. In fact, the brain networks of those low on the MAAS suggests that they continued to be pre-occupied with the elaboration of food cues even after cue exposure had ended. Further work is needed to examine whether mindfulness-based therapies alter brain networks to food cues and whether these changes are related to eating behavior
    corecore