54 research outputs found

    An improved global analysis of nuclear parton distribution functions including RHIC data

    Full text link
    We present an improved leading-order global DGLAP analysis of nuclear parton distribution functions (nPDFs), supplementing the traditionally used data from deep inelastic lepton-nucleus scattering and Drell-Yan dilepton production in proton-nucleus collisions, with inclusive high-pTp_T hadron production data measured at RHIC in d+Au collisions. With the help of an extended definition of the χ2\chi^2 function, we now can more efficiently exploit the constraints the different data sets offer, for gluon shadowing in particular, and account for the overall data normalization uncertainties during the automated χ2\chi^2 minimization. The very good simultaneous fit to the nuclear hard process data used demonstrates the feasibility of a universal set of nPDFs, but also limitations become visible. The high-pTp_T forward-rapidity hadron data of BRAHMS add a new crucial constraint into the analysis by offering a direct probe for the nuclear gluon distributions -- a sector in the nPDFs which has traditionally been very badly constrained. We obtain a strikingly stronger gluon shadowing than what has been estimated in previous global analyses. The obtained nPDFs are released as a parametrization called EPS08.Comment: 26 pages, 14 figures; for v2, we have revised the Table 1 and Fig. 13, and added the Fig. 14 and the Table 3 along with some more discussio

    Weak boson production measured in PbPb and pp collisions by CMS

    Full text link
    The unprecedented center-of-mass energy available at the LHC offers unique opportunities for studying the properties of the strongly-interacting QCD matter created in PbPb collisions at extreme temperatures and very low parton momentum fractions. Electroweak boson production is an important benchmark process at hadron colliders. Precise measurements of Z production in heavy-ion collisions can help to constrain nuclear PDFs as well as serve as a standard candle of the initial state in PbPb collisions at the LHC energies. The inclusive and differential measurements of the Z boson yield in the muon decay channel will be presented, establishing that no modification is observed with respect to next-to-leading order pQCD calculations, scaled by the number of incoherent nucleon-nucleon collisions. The status of the Z measurement in the electron decay channel, as well as the first observation of W \rightarrow \mu {\nu} in heavy ion collisions will be given. The heavy-ion results will be presented in the context of those obtained in pp collisions with the CMS detector.Comment: Quark Matter 2011 conference proceeding

    The Emerging QCD Frontier: The Electron Ion Collider

    Full text link
    The self-interactions of gluons determine all the unique features of QCD and lead to a dominant abundance of gluons inside matter already at moderate xx. Despite their dominant role, the properties of gluons remain largely unexplored. Tantalizing hints of saturated gluon densities have been found in ee+p collisions at HERA, and in d+Au and Au+Au collisions at RHIC. Saturation physics will have a profound influence on heavy-ion collisions at the LHC. But unveiling the collective behavior of dense assemblies of gluons under conditions where their self-interactions dominate will require an Electron-Ion Collider (EIC): a new facility with capabilities well beyond those In this paper I outline the compelling physics case for ee+A collisions at an EIC and discuss briefly the status of machine design concepts. of any existing accelerator.Comment: 11 pages, 9 figures, prepared for 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008), Jaipur, India, 4-10 Feb. 200

    Constraints for the nuclear parton distributions from Z and W production at the LHC

    Full text link
    The LHC is foreseen to finally bring also the nuclear collisions to the TeV scale thereby providing new possibilities for physics studies, in particular related to the electro-weak sector of the Standard Model. We study here the Z and W production in proton-lead and lead-lead collisions at the LHC, concentrating on the prospects of testing the factorization and constraining the nuclear modifications of the parton distribution functions (PDFs). Especially, we find that the rapidity asymmetries in proton-nucleus collisions, arising from the differences in the PDFs between the colliding objects, provide a decisive advantage in comparison to the rapidity-symmetric nucleus-nucleus case. We comment on how such studies will help to improve our knowledge of the nuclear PDFs.Comment: The version accepted for publication in JHEP. New figures has been added, and we also discuss the single charged lepton productio

    A global DGLAP analysis of nuclear PDFs

    Full text link
    In this talk, we shortly report results from our recent global DGLAP analysis of nuclear parton distributions. This is an extension of our former EKS98-analysis improved with an automated χ2\chi^2 minimization procedure and uncertainty estimates. Although our new analysis show no significant deviation from EKS98, a sign of a significantly stronger gluon shadowing could be seen in the RHIC BRAHMS data.Comment: Talk given at EPS HEP 200

    The physics potential of proton-nucleus collisions at the TeV scale

    Full text link
    The LHC brings nuclear collisions to the TeV scale for the first time and the first data show the qualitative differences of this new regime. The corresponding phase-space available encompasses completely uncharted regions of QCD in which high-density or high-temperature domains can be identified. Proton-nucleus runs are essential for a complete interpretation of the data and for the study of new regimes dominated by large occupation numbers in the hadronic wave function. I comment here the physics opportunities for p+Pb runs at the LHC and d+Au runs at RHIC and the corresponding needs in view of the new Pb+Pb data from the LHC.Comment: Proceedings of the conference Quark Matter 2011, Annecy (France) May 201

    Gluon Shadowing in DIS off Nuclei

    Full text link
    Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB < 0.01. Such a formalism incorporates naturally color transparency and coherence length effects. Calculations of the nuclear shadowing for the \bar{q}q Fock component of the photon are based on an exact numerical solution of the evolution equation for the Green function, using a realistic form of the dipole cross section and nuclear density function. Such an exact numerical solution is unavoidable for xB > 0.0001, when a variation of the transverse size of the \bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.Comment: 29 pages including 7 figures; Fig.7 modified, some references and corresponding discussion adde
    • …
    corecore