282 research outputs found
See-Saw Masses for Quarks and Leptons in SU(5)
We build on a recent paper by Grinstein, Redi and Villadoro, where a see-saw
like mechanism for quark masses was derived in the context of spontaneously
broken gauged flavour symmetries. The see-saw mechanism is induced by heavy
Dirac fermions which are added to the Standard Model spectrum in order to
render the flavour symmetries anomaly-free. In this letter we report on the
embedding of these fermions into multiplets of an SU(5) grand unified theory
and discuss a number of interesting consequences.Comment: 15 pages, 4 figures (v3: outline restructured, modified mechanism to
cancel anomalies
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
Spontaneous Parity Violation in SUSY Strong Gauge Theory
We suggest simple models of spontaneous parity violation in supersymmetric
strong gauge theory. We focus on left-right symmetric model and investigate
vacuum with spontaneous parity violation. Non-perturbative effects are
calculable in supersymmetric gauge theory, and we suggest two new models. The
first model shows confinement, and the second model has a dual description of
the theory. The left-right symmetry breaking and electroweak symmetry breaking
are simultaneously occurred with the suitable energy scale hierarchy. The
second model also induces spontaneous supersymmetry breaking.Comment: 14 page
NLSP Gluino Search at the Tevatron and early LHC
We investigate the collider phenomenology of gluino-bino co-annihilation
scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for
example, in a class of realistic supersymmetric models with non-universal
gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino
should be nearly degenerate in mass, so that the typical gluino search channels
involving leptons or hard jets are not available. Consequently, the gluino can
be lighter than various bounds on its mass from direct searches. We propose a
new search for NLSP gluino involving multi-b final states, arising from the
three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two
realistic models with gluino mass of around 300 GeV for which the three-body
decay is dominant, and show that a 4.5 \sigma observation sensitivity can be
achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7
TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events
for the two models is O(10), to be compared with negligible SM background
event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and
accepted for publication in JHE
Potential of optimized NOvA for large theta(13) & combined performance with a LArTPC & T2K
NOvA experiment has reoptimized its event selection criteria in light of the
recently measured moderately large value of theta(13). We study the improvement
in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation
due to these new features. For favourable values of deltacp, NOvA sensitivity
to mass hierarchy and leptonic CP violation is increased by 20%. Addition of 5
years of neutrino data from T2K to NOvA more than doubles the range of deltacp
for which the leptonic CP violation can be discovered, compared to stand alone
NOvA. But for unfavourable values of deltacp, the combination of NOvA and T2K
are not enough to provide even a 90% C.L. hint of hierarchy discovery.
Therefore, we further explore the improvement in the hierarchy and CP violation
sensitivities due to the addition of a 10 kt liquid argon detector placed close
to NOvA site. The capabilities of such a detector are equivalent to those of
NOvA in all respects. We find that combined data from 10 kt liquid argon
detector (3 years of nu + 3 years of nubar run), NOvA (6 years of nu + 6 years
of nubar run) and T2K (5 years of nu run) can give a close to 2 sigma hint of
hierarchy discovery for all values of deltacp. With this combined data, we can
achieve CP violation discovery at 95% C.L. for roughly 60% values of deltacp.Comment: 22 pages, 24 pdf figures, 5 tables. In the appendix, new results are
presented with conservative choices of central values of oscillation
parameters. New references are added. Accepted in JHE
Gauged Flavor Group with Left-Right Symmetry
We construct an anomaly-free extension of the left-right symmetric model,
where the maximal flavor group is gauged and anomaly cancellation is guaranteed
by adding new vectorlike fermion states. We address the question of the lowest
allowed flavor symmetry scale consistent with data. Because of the mechanism
recently pointed out by Grinstein et al. tree-level flavor changing neutral
currents turn out to play a very weak constraining role. The same occurs, in
our model, for electroweak precision observables. The main constraint turns out
to come from WR-mediated flavor changing neutral current box diagrams,
primarily K - Kbar mixing. In the case where discrete parity symmetry is
present at the TeV scale, this constraint implies lower bounds on the mass of
vectorlike fermions and flavor bosons of 5 and 10 TeV respectively. However,
these limits are weakened under the condition that only SU(2)_R x U(1)_{B-L} is
restored at the TeV scale, but not parity. For example, assuming the SU(2)
gauge couplings in the ratio gR/gL approx 0.7 allows the above limits to go
down by half for both vectorlike fermions and flavor bosons. Our model provides
a framework for accommodating neutrino masses and, in the parity symmetric
case, provides a solution to the strong CP problem. The bound on the lepton
flavor gauging scale is somewhat stronger, because of Big Bang Nucleosynthesis
constraints. We argue, however, that the applicability of these constraints
depends on the mechanism at work for the generation of neutrino masses.Comment: 1+23 pages, 1 table, 5 figures. v3: some more textual fixes (main
change: discussion of Lepton Flavor Violating observables rephrased). Matches
journal versio
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Composite Leptoquarks at the LHC
If electroweak symmetry breaking arises via strongly-coupled physics, the
observed suppression of flavour-changing processes suggests that fermion masses
should arise via mixing of elementary fermions with composite fermions of the
strong sector. The strong sector then carries colour charge, and may contain
composite leptoquark states, arising either as TeV scale resonances, or even as
light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to
colour, get a mass of the order of several hundred GeV, beyond the reach of
current searches at the Tevatron. The same generic mechanism that suppresses
flavour-changing processes suppresses leptoquark-mediated rare processes,
making it conceivable that the many stringent constraints may be evaded. The
leptoquarks couple predominantly to third-generation quarks and leptons, and
the prospects for discovery at LHC appear to be good. As an illustration, a
model based on the Pati-Salam symmetry is described, and its embedding in
models with a larger symmetry incorporating unification of gauge couplings,
which provide additional motivation for leptoquark states at or below the TeV
scale, is discussed.Comment: 10 pp, version to appear in JHE
Left-right symmetry at LHC and precise 1-loop low energy data
Despite many tests, even the Minimal Manifest Left-Right Symmetric Model
(MLRSM) has never been ultimately confirmed or falsified. LHC gives a new
possibility to test directly the most conservative version of left-right
symmetric models at so far not reachable energy scales. If we take into account
precise limits on the model which come from low energy processes, like the muon
decay, possible LHC signals are strongly limited through the correlations of
parameters among heavy neutrinos, heavy gauge bosons and heavy Higgs particles.
To illustrate the situation in the context of LHC, we consider the "golden"
process . For instance, in a case of degenerate heavy neutrinos
and heavy Higgs masses at 15 TeV (in agreement with FCNC bounds) we get
fb at TeV which is consistent with muon
decay data for a very limited masses in the range (3008 GeV, 3040 GeV).
Without restrictions coming from the muon data, masses would be in the
range (1.0 TeV, 3.5 TeV). Influence of heavy Higgs particles themselves on the
considered LHC process is negligible (the same is true for the light, SM
neutral Higgs scalar analog). In the paper decay modes of the right-handed
heavy gauge bosons and heavy neutrinos are also discussed. Both scenarios with
typical see-saw light-heavy neutrino mixings and the mixings which are
independent of heavy neutrino masses are considered. In the second case heavy
neutrino decays to the heavy charged gauge bosons not necessarily dominate over
decay modes which include only light, SM-like particles.Comment: 16 pages, 10 figs, KL-KS and new ATLAS limits taken into accoun
Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology
We study the colored resonance production at the LHC in a most general
approach. We classify the possible colored resonances based on group theory
decomposition, and construct their effective interactions with light partons.
The production cross section from annihilation of valence quarks or gluons may
be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with
nominal couplings, leading to the largest production rates for new physics at
the TeV scale, and simplest event topology with dijet final states. We apply
the new dijet data from the LHC experiments to put bounds on various possible
colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The
formulation is readily applicable for future searches including other decay
modes.Comment: 29 pages, 9 figures. References updated and additional K-factors
include
- …