7 research outputs found

    Haptic Interaction with Guitar and Bass Virtual Strings

    Get PDF
    A multimodal simulation of instrumental virtual strings is proposed. The system presents two different scenes under the Unity3D software, respectively representing guitar and bass strings. Physical interaction is enabled by a Sensable Technologies Phantom TM Omni, a portable haptic device with six degrees of freedom. Thanks to this device, credible physically-modeled haptic cues are returned by the virtual strings. Audio and visual feedback are dealt with by the system, too. Participants in a pilot user test appreciated the simulation especially concerning the haptic component

    Keytar: Melodic control of multisensory feedback from virtual strings

    Get PDF
    A multisensory virtual environment has been designed, aiming at recreating a realistic interaction with a set of vibrating strings. Haptic, auditory and visual cues progressively istantiate the environment: force and tactile feedback are provided by a robotic arm reporting for string reaction, string surface properties, and furthermore defining the physical touchpoint in form of a virtual plectrum embodied by the arm stylus. Auditory feedback is instantaneously synthesized as a result of the contacts of this plectrum against the strings, reproducing guitar sounds. A simple visual scenario contextualizes the plectrum in action along with the vibrating strings. Notes and chords are selected using a keyboard controller, in ways that one hand is engaged in the creation of a melody while the other hand plucks virtual strings. Such components have been integrated within the Unity3D simulation environment for game development, and run altogether on a PC. As also declared by a group of users testing a monophonic Keytar prototype with no keyboard control, the most significant contribution to the realism of the strings is given by the haptic feedback, in particular by the textural nuances that the robotic arm synthesizes while reproducing physical attributes of a metal surface. Their opinion, hence, argues in favor of the importance of factors others than auditory feedback for the design of new musical interfaces

    No Strings Attached: Force and Vibrotactile Feedback in a Guitar Simulation

    Get PDF
    In this paper we propose a multisensory simulation of plucking guitar strings in virtual reality. The auditory feedback is generated by a physics-based simulation of guitar strings, and haptic feedback is provided by a combination of high fidelity vibrotactile actuators and a Phantom Omni haptic device. Moreover, we present a user study (n=29) exploring the perceived realism of the simulation and the relative importance of force and vibrotactile feedback for creating a realistic experience of plucking virtual strings. The study compares four conditions: no haptic feedback, vibrotactile feedback, force feedback, and a combination of force and vibrotactile feedback. The results indicate that the combination of vibrotactile and force feedback eliits the most realistic experience, and during this condition, the participants were less likely to inadvertently hit strings after the intended string had been plucked. Notably, no statistically significant differences were found between the conditions involving either vibrotactile or force feedback, which points towards an indication that haptic feedback is important but does not need to be high fidelity in order to enhance the quality of the experience
    corecore