227 research outputs found

    The nature of dark energy

    Get PDF
    According to a variety of cosmological observations at small and large redshifts, the universe is composed by a large fraction of a weakly clustered component with negative pressure, called dark energy. The nature of the dark energy, i.e. its interaction and self-interaction properties, is still largely unknown. In this contribution we review the properties of dark energy as inferred from observations, with particular emphasis on the cosmic microwave background. We argue that the current dataset imposes strong constraints on the coupling of dark energy to dark matter, while it is still insufficient to constrain the equation of state or potential. Future data will dramatically improve the prospects

    Constraints on the interaction and self-interaction of dark energy from cosmic microwave background

    Get PDF
    It is well-known that even high quality cosmic microwave background (CMB) observations are not sufficient on their own to determine the equation of state of the dark energy, due to the effect of the so-called geometric degeneracy at large multipoles and the cosmic variance at small ones. In contrast, we find that CMB data can put tight constraints on another fundamental property of the dark energy, namely its coupling to dark matter. We compare the current high-resolution CMB data to models of dark energy characterized by an inverse power law or exponential potential and by the coupling to dark matter. We determine the curve of degeneracy between the dark energy equation of state and the dimensionless Hubble parameter h and show that even an independent perfect determination of h may be insufficient to distinguish dark energy from a pure cosmological constant with the current dataset. On the other hand, we find that the interaction with dark matter is firmly bounded, regardless of the potential. In terms of the dimensionless ratio \beta of the dark energy interaction to gravity, we find \beta <0.16 (95% c.l.). This implies that the effective equation of state between equivalence and tracking has been close to the pure matter equation of state within 1% and that scalar gravity is at least 40 times weaker than tensor gravity. Further, we show that an experiment limited by cosmic variance only, like the Planck mission, can put an upper bound \beta < 0.05 (95% c.l.). This shows that CMB observations have a strong potentiality not only as a test of cosmic kinematics but also as a gravitational probe.Comment: 9 pages, 4 figure

    Early Experience with the New Ovation Alto Stent Graft in Endovascular Abdominal Aortic Aneurysm Repair

    Get PDF
    Introduction: Since 2010, the Ovation Abdominal Stent Graft System has offered a new sealing concept, achieved by a sealing ring filled with polymer 13 mm from the renal arteries. In the latest version, called Ovation Alto, the sealing ring is relocated 6 mm closer to the top of the fabric. This study describes the early clinical outcomes, after CE Mark approval in August 2020, of endovascular aneurysm repair with the Alto endograft. Report: Eleven patients underwent endovascular aneurysm repair with implantation of Ovation Alto endografts. All patients were male, and the median age was 75 (IQR 5.5) years. Hostile proximal aortic neck (&lt;10 mm) was identified in six cases (54.5%). All procedures were performed using bilateral percutaneous approaches with no groin complications. The median procedure time was 58 (IQR 7.2) minutes, the median contrast volume used was 65 (IQR 4.2) mL, and the median blood loss 40 (IQR 12.4) mL. Technical success was achieved in all cases. The median stent graft landing distance between the top of the fabric and the lowest renal artery was 1.4 (IQR 0.8) mm. No intra-operative high flow endoleaks were registered. At one and six month follow up, there was 100% clinical success (no type I/III endoleak, sac enlargement, stent graft migration, polymer leakage, abdominal aortic aneurysm related mortality, or secondary intervention). Discussion: Initial experience confirms the early technical and clinical success of the new Ovation Alto stent graft. Technical modifications to the endograft could allow for accommodation of a more comprehensive range of anatomies on label. Further studies are needed to evaluate long term durability outcomes

    High Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Are Associated with a Higher Risk of Hemodialysis Vascular Access Failure

    Get PDF
    Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. All patients who underwent the procedure of the creation of a first native AVF for hemodialysis from January 2019 to December 2020 were considered eligible to be part of this study. Reinterventions for AVF malfunctioning were registered and the population was subdivided into two groups with respect to AVF malfunctioning. ROC curves were obtained to find the appropriate cut-off values for the NLR and PLR. A multivariate analysis was used to identify the independent predictors for an AVF malfunction. Kaplan–Meier curves were used to evaluate the AVF patency rates. A total of 178 patients were enrolled in the study, of them 70% (n = 121) were male. The mean age was 67.5 ± 12 years. Reinterventions for AVF malfunctioning were performed on 102 patients (57.3%). An NLR &gt; 4.21 and a PLR &gt; 208.8 was selected as the cut-off for AVF malfunctioning. The study population was divided into two groups depending on the NLR and PLR values of the individual. For the NLR &lt; 4.21 group, the AVF patency rates were 90.7%, 85.3%, and 84% at the 3-, 6-, and 12-month follow-up, respectively, and 77.5%, 65.8%, and 39.3% at 3, 6, and 12 months for the NLR &gt; 4.21 group, respectively (p &lt; 0.0001). For the PLR &lt; 208.8 group, the patency rates were 85.6%, 76.7%, and 67.7% at the 3-, 6-, and 12-month follow-up. For the PLR &gt; 208.28 group, the patency rates were 80.8%, 71.2%, and 50.7% for the 3-, 6-, and 12-month follow-up, respectively (p = 0.014). The multivariate analysis highlighted that diabetes mellitus, the neutrophil count, the lymphocyte count, and the NLR were independent risk factors for an AVF failure. In our experience, the NLR and PLR are useful markers for the stratification of vascular access failure in hemodialysis patients. The inexpensive nature and ready availability of the values of these biomarkers are two points of strength for everyday clinical practice

    Residual aneurysmal sac shrinkage post-endovascular aneurysm repair: the role of preoperative inflammatory markers

    Get PDF
    Introduction: In this study, we evaluated the role of preoperative inflammatory markers as Neutrophil-to-Lymphocyte (NLR) and Platelet-to-Lymphocyte (PLR) ratios in relation to post-endovascular aneurysm repair (EVAR) sac shrinkage, which is known to be an important factor for abdominal aortic aneurysm (AAA) healing. Methods: This was a single-center retrospective observational study. All patients who underwent the EVAR procedure from January 2017 to December 2020 were eligible for this study. Pre-operative blood samples of all patients admitted were used to calculate NLR and PLR. Sac shrinkage was defined as a decrease of ≥5 mm in the maximal sac diameter. The optimal NLR and PLR cut-offs for aneurysmal sac shrinkage were obtained from ROC curves. Stepwise multivariate analysis was performed in order to identify independent risk and protective factors for the absence of AAA shrinkage. Kaplan–Meier curves were used to evaluate survival rates with respect to the AAA shrinkage. Results: A total of 184 patients were finally enrolled. The mean age was 75.8 ± 8.3 years, and 85.9% were male (158/184). At a mean follow-up of 43 ± 18 months, sac shrinkage was registered in 107 patients (58.1%). No-shrinking AAA patients were more likely to be older, to have a higher level of NLR and PLR, and be an active smoker. Kaplan–Meier curves highlighted a higher rate of survival for shrinking AAA patients with respect to their counterparts (p &lt; 0.03). Multivariate analysis outlined active smoking and NLR as independent risk factors for no-shrinking AAA. Conclusions: Inflammation emerged as a possible causative factor for no-shrinking AAA, playing a role in aneurysmal sac remodeling. This study revealed that inflammatory biomarkers, such as NLR and PLR, can be used as a preoperative index of AAA sac behavior after EVAR procedures

    Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    Get PDF
    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas

    Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    Get PDF
    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans

    Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms

    Get PDF
    Background A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from “domestic” microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Results Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Conclusions Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions

    Spatially controlled cell adhesion on three-dimensional substrates

    Get PDF
    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and µ-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of µ-patterned scaffolds based on the “Substrate Modification and Replication by Thermoforming” (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60°C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 µm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures
    • …
    corecore