37 research outputs found

    Predicting the Risk of Lyme Disease: Habitat Suitability for Ixodes scapularis in the North Central United States

    Get PDF
    The distribution and abundance of Ixodes scapularis were studied in Wisconsin, northern Illinois, and portions of the Upper Peninsula of Michigan by inspecting small mammals for ticks and by collecting questing ticks at 138 locations in state parks and natural areas. Environmental data were gathered at a local level (i.e., micro and meso levels), and a geographic information system (GIS) was used with several digitized coverages of environmental data to create a habitat profile for each site and a grid map for Wisconsin and Illinois. Results showed that the presence and abundance of I. scapularis varied, even when the host population was adequate. Tick presence was positively associated with deciduous, dry to mesic forests and alfisol-type soils of sandy or loam-sand textures overlying sedimentary rock. Tick absence was associated with grasslands, conifer forests, wet to wet/mesic forests, acidic soils of low fertility and a clay soil texture, and Precambrian bedrock. We performed a discriminant analysis to determine environmental differences between positive and negative tick sites and a regression equation to examine the probability of I. scapularis presence per grid. Both analyses indicated that soil order and land cover were the dominant contributors to tick presence. We then constructed a risk map indicating suitable habitats within areas where I. scapularis is already established. The risk map also shows areas of high probability the tick will become established if introduced. Thus, this risk analysis has both explanatory power and predictive capability

    Suitability of maize crop residue fermented by Pleurotus ostreatus as feed for edible crickets: growth performance, micronutrient content, and iron bioavailability

    Get PDF
    Small-scale farming of edible insects could help combat public health challenges such as protein energy malnutrition and anemia, but reliable low-cost feeds for insects are needed. In resource-limited contexts, where grains such as maize are prohibitively costly for use as insect feed, the feasibility of insect farming may depend on finding alternatives. Here, we explore the potential to modify plentiful maize crop residue with edible mushroom mycelium to generate a low-cost feed adjunct for the farmed two-spotted cricket, Gryllus bimaculatus. Mushroom farming, like insect agriculture, is versatile; it can yield nutritious food while increasing system circularity by utilizing lignocellulosic residues from row crops as inputs. Pleurotus ostreatus, is an edible basidiomycete capable of being cultivated on corn stover (Zea mays). Mushroom harvest results in abundant “spent” substrate, which we investigated as a candidate feed ingredient. We created six cricket feeds containing fermented Pleurotus substrate plus an unfermented control, measuring cricket mass, mortality, and maturation weekly to evaluate cricket growth performance impacts of both fungal fermentation duration and mushroom formation. Pasteurized corn stover was inoculated with P. ostreatus mycelium and fermented for 0, 2, 3, 4, or 8 weeks. Some 4 and 8-week substrates were induced to produce mushrooms through manipulations of temperature, humidity, and light conditions. Dried fermented stover (40%) was added to a 1:1 corn/soy grain mix and fed to crickets ad libitum for 44 days. The unfermented control group showed higher survivorship compared to several fermented diets. Control group mass yield was higher for 2 out of 6 fermented diets. Little variation in cricket iron content was observed via ICP-spectrometry across feeds, averaging 2.46 mg/100 g. To determine bioavailability, we conducted in vitro Caco-2 human colon epithelial cell absorption assays, showing that iron in crickets fed fruiting-induced substrates was more bioavailable than in unfruited groups. Despite more bioavailable iron in crickets reared on post-fruiting substrates, we conclude that Pleurotus-fermented stover is an unsuitable feed ingredient for G. bimaculatus due to high mortality, variability in growth responses within treatments, and low mass yield

    Do-It-Yourself Tick Control: Granular Gamma-Cyhalothrin Reduces Ixodes scapularis (Acari: Ixodidae) Nymphs in Residential Backyards

    No full text
    Lyme disease is the most common vector-borne disease in the United States with hotspots in the Northeast and Midwest. Integrated vector control for mosquito-borne disease prevention is often organized at the community level, but tick control is primarily coordinated at the household and individual level. Management of the blacklegged tick, Ixodes scapularis (Say), the vector of the causative agent of Lyme disease in the Midwest and eastern United States in peridomestic environments may be critical as many tick encounters are reported to occur in the yard. Therefore, we assessed the effectiveness of a widely available and low-cost pesticide that targets common lawn pests and is labeled for use against ticks. In June 2019, we evaluated a granular form of gamma-cyhalothrin in a placebo-controlled residential backyard study (n = 90) in two communities in Wisconsin. The product applied by the research team reduced nymphal blacklegged ticks in plots established in the lawn part of the ecotone by 97% one week after application at both communities and by 89–97% three to four weeks postapplication. The proportion of homes with at least one nymphal tick postapplication was significantly lower at acaricide-treated homes and ranged from 4.2 to 29.2% compared with placebo homes where at least one nymphal tick was found at 50–81.5% of homes. These results support the efficacy of a low-cost do-it-yourself strategy for homeowners seeking to reduce blacklegged ticks in the yard

    Assessing Recognition of the Vector of Lyme Disease Using Resin-Embedded Specimens in a Lyme Endemic Area

    No full text
    Lyme disease (LD) is the most common vector-borne disease in the United States. To assess whether a tick bite puts someone at risk for LD, adequate tick identification skills are needed. We surveyed residents of a high LD-incidence state, Wisconsin, on their ability to distinguish ticks from insects and to identify the specimens that could transmit the LD causative agent. Surveys were conducted using resin blocks with four insects and four tick specimens embedded. About half of the participants (64 of 130) recognized all of the ticks, and 60% of those individuals chose only ticks and no insects. Younger participants (18- to 44-yr old) were more likely to identify ticks correctly compared with those 45 yr and older. Participants who agreed strongly with the statement ‘I know a lot about ticks` were also likelier to correctly identify ticks. When asked to identify which specimens could transmit LD, less than 25% of participants chose both the Ixodes scapularis Say adult female and nymph and about half of those (15% of participants) picked only those two and no other specimens. Although the relatively small convenience sample was biased toward younger participants who consider themselves ‘outdoorsy’, results showed that further assessments of tick recognition skills are needed to understand what determines whether people can recognize medically important ticks and to evaluate the potential benefits of enhanced education. In addition to the value of the resin blocks as research tools, the blocks may be useful as training tools to improve tick check efficacy

    Safety and immunogenicity of orally administered poxvirus vectored constructs in the white-footed mouse (Peromyscus leucopus)

    No full text
    Globally, zoonotic spillover is becoming more frequent and represents a growing public health concern. Reservoir-targeted vaccination offers an intriguing alternative to traditional vaccine practices by establishing protection in wild populations that maintain the natural pathogen cycle. As an important pathogen reservoir, Peromyscus leucopus Rafinesque or the white-footed mouse has been the target of several experimental vaccines. However, strategies are limited by the method of administration, need for repeated dosing, or safety of constructs in the field. To address these concerns, we evaluated two highly attenuated poxviruses, raccoonpox virus (RCN) and modified vaccinia Ankara (MVA) virus as potential oral vaccine vectors in white-footed mice. Following oral administration, P. leucopus showed no adverse signs. A single oral dose elicited robust immune responses in mice to the foreign influenza hemagglutinin protein expressed by poxvirus vaccine vectors. Serum hemagglutinin inhibition antibody titers were detected by day 7 post immunization and persisted until study termination (77 days post immunization). This study establishes the safety and immunogenicity of recombinant MVA and RCN poxviruses in P. leucopus and demonstrates the suitability of these vectors as part of a reservoir-targeted vaccine strategy for white-footed mice

    Integrated Tick Management in South Central Wisconsin: Impact of Invasive Vegetation Removal and Host-Targeted Acaricides on the Density of Questing Ixodes scapularis (Acari: Ixodidae) Nymphs

    No full text
    As tick-borne disease incidence increases and pathogens expand into new areas, the need for effective tick management strategies is paramount. In this 5-yr study (2014–2018) conducted in south central Wisconsin, we assessed whether an integrated tick management approach, deployed during peak tick activity (May–August), was more effective at reducing black-legged ticks (Ixodes scapularis Say (Ixodida: Ixodidae)), than individual interventions. Using a factorial design, invasive vegetation removal (Amur honeysuckle, Lonicera maackii Ruprecht (Dipsacales: Caprifoliaceae) and common buckthorn, Rhamnus cathartica Linnaeus (Rosales: Rhamnaceae)) was coupled with deployments of permethrin-treated cotton nesting materials (tick tubes) that target the white-footed mouse (Peromyscus leucopus Rafinesque (Rodentia: Cricetidae)). Results show that the probability of encountering a larval tick by drag sampling was unaffected by treatments at the cumulative 5-yr level. However, vegetation removal significantly reduced larval encounters in 2014, 2015, and 2018, by 33%, 57%, and 61% respectively, and reduced the density of questing nymphal (DON) ticks by 45% in 2015 compared to controls. Despite the limited effect on DON, vegetation removal significantly reduced the cumulative 5-yr density of Borrelia burgdorferi sensu stricto infected nymphs (DIN) (70%) compared to controls as a result of decreased nymphal infection prevalence. Sites treated with tick tubes had lower DIN (66%) and DON (54%) across the study and nymphs were reduced every year following the initial year of deployment compared to controls. Combining treatments did not further reduce DIN or DONs. We conclude that long-term integration of tick tubes with invasive vegetation removal does not provide additional benefit over individual treatments alone

    Passive Animal Surveillance to Identify Ticks in Wisconsin, 2011–2017

    No full text
    The introduction of new tick species poses a risk to human and animal health. Systematic active surveillance programs are expensive and uncommon. We evaluated a passive animal surveillance program as a monitoring tool to document the geographic distribution and host associations of ticks in Wisconsin. Passive surveillance partners included veterinary medical clinics, domestic animal shelters, and wildlife rehabilitation centers from 35 of the 72 Wisconsin counties. A total of 10,136 tick specimens were collected from 2325 animals from July 2011 to November 2017 and included Dermacentor variabilis Say (29.7% of all ticks), Ixodes texanus Banks (25.5%), Ixodes scapularis Say (19.5%), Haemaphysalis leporispalustris Packard (13.8%), Ixodes cookei Packard (4.4%), and Dermacentor albipictus Packard (1.7%). Less common species (<1% of collection) included Ixodes dentatus Marx, Ixodes sculptus Neumann, Ixodes marxi Banks, Amblyomma americanum Linnaeus, and Rhipicephalus sanguineus Latreille. Of the 2325 animals that were examined, most were domestic dogs (53%), eastern cottontail rabbits (16%), domestic cats (15%), and North American raccoons (11%). An additional 21 mammal and 11 bird species were examined at least once during the six years of the study. New county records are summarized for each species. Public health, academic, and veterinary and animal care partners formed a community of practice enabling effective statewide tick surveillance

    Identification of public submitted tick images : A neural network approach

    No full text
    Ticks and tick-borne diseases represent a growing public health threat in North America and Europe. The number of ticks, their geographical distribution, and the incidence of tick-borne diseases, like Lyme disease, are all on the rise. Accurate, real-time tick-image identification through a smartphone app or similar platform could help mitigate this threat by informing users of the risks associated with encountered ticks and by providing researchers and public health agencies with additional data on tick activity and geographic range. Here we outline the requirements for such a system, present a model that meets those requirements, and discuss remaining challenges and frontiers in automated tick identification. We compiled a user-generated dataset of more than 12,000 images of the three most common tick species found on humans in the U.S.: Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. We used image augmentation to further increase the size of our dataset to more than 90,000 images. Here we report the development and validation of a convolutional neural network which we call “TickIDNet,” that scores an 87.8% identification accuracy across all three species, outperforming the accuracy of identifications done by a member of the general public or healthcare professionals. However, the model fails to match the performance of experts with formal entomological training. We find that image quality, particularly the size of the tick in the image (measured in pixels), plays a significant role in the network’s ability to correctly identify an image: images where the tick is small are less likely to be correctly identified because of the small object detection problem in deep learning. TickIDNet’s performance can be increased by using confidence thresholds to introduce an “unsure” class and building image submission pipelines that encourage better quality photos. Our findings suggest that deep learning represents a promising frontier for tick identification that should be further explored and deployed as part of the toolkit for addressing the public health consequences of tick-borne diseases

    Peromyscus maniculatus (Rodentia : Cricetidae): An overlooked reservoir of tick-borne pathogens in the Midwest, USA?

    No full text
    Mice belonging to the genus Peromyscus are one of the most important reservoirs of tick-borne pathogens in the United States. However, the composition and abundance of Peromyscus species may vary geographically. The woodland deer mouse, Peromyscus maniculatus gracilis, is often abundant in the northern counties of Minnesota, Wisconsin, and Michigan. In these states, multiple pathogens transmitted by the blacklegged tick, Ixodes scapularis, are endemic. In comparison to the well-studied white-footed mouse, Peromyscus leucopus, little is known about the importance of P. maniculatus in maintaining natural cycles of tick-borne pathogens. We conducted small mammal trapping in north-central Wisconsin and compared the modified reservoir potential of P. maniculatus to P. leucopus. Based on mixed-model regression analysis, individual P. maniculatus were 2.07 (1.07–4.01) times more likely to be infected with Borrelia burgdorferi compared with P. leucopus. We report the first detection of three emerging tick-borne pathogens (Babesia microti, Borrelia mayonii, and Ehrlichia muris eauclairensis) in P. maniculatus. Additionally, P. maniculatus infected with Ba. microti were 4.8 (2.74–8.50) times more likely to be concurrently infected with Bo. burgdorferi compared with P. leucopus. While we found individual P. leucopus to be more infested with both larval and nymphal I. scapularis, P. maniculatus was the more abundant species. As a result, P. maniculatus had a higher modified reservoir potential in our study area and was likely responsible for feeding and infecting more ticks with pathogens than P. leucopus. Overall, our results illustrate that P. maniculatus is an important reservoir in areas of the Midwest, where it occurs in high abundance
    corecore