2 research outputs found
Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems
On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs
NASA Ares I Launch Vehicle Roll and Reaction Control Systems Lessons Learned
On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The lessons learned documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing with special emphasis on each task order. In summary, this paper attempts to capture key lessons learned that should be helpful in the development of future launch vehicle RCS designs