6 research outputs found

    Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors

    Full text link
    As a result of our efforts to discover novel p53:MDM2 proteinā€“protein interaction inhibitors useful for treating cancer, the potent and selective MDM2 inhibitor NVP-CGM097 (<b>1</b>) with an excellent in vivo profile was selected as a clinical candidate and is currently in phase 1 clinical development. This article provides an overview of the discovery of this new clinical p53:MDM2 inhibitor. The following aspects are addressed: mechanism of action, scientific rationale, binding mode, medicinal chemistry, pharmacokinetic and pharmacodynamic properties, and in vivo pharmacology/toxicology in preclinical species

    Discovery and Pharmacological Characterization of Novel Quinazoline-Based PI3K Delta-Selective Inhibitors

    Full text link
    Inhibition of the lipid kinase PI3KĪ“ is a promising principle to treat B and T cell driven inflammatory diseases. Using a scaffold deconstructionā€“reconstruction strategy, we identified 4-aryl quinazolines that were optimized into potent PI3KĪ“ isoform selective analogues with good pharmacokinetic properties. With compound <b>11</b>, we illustrate that biochemical PI3KĪ“ inhibition translates into modulation of isoform-dependent immune cell function (human, rat, and mouse). After oral administration of compound <b>11</b> to rats, proximal PD markers are inhibited, and dose-dependent efficacy in a mechanistic plaque forming cell assay could be demonstrated

    Potent, Selective, and Orally Bioavailable Inhibitors of VPS34 Provide Chemical Tools to Modulate Autophagy <i>in Vivo</i>

    Full text link
    Autophagy is a dynamic process that regulates lysosomal-dependent degradation of cellular components. Until recently the study of autophagy has been hampered by the lack of reliable pharmacological tools, but selective inhibitors are now available to modulate the PI 3-kinase VPS34, which is required for autophagy. Here we describe the discovery of potent and selective VPS34 inhibitors, their pharmacokinetic (PK) properties, and ability to inhibit autophagy in cellular and mouse models

    A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis

    Full text link
    This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role

    Optimization of Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for Duration of Action, as an Inhaled Therapy for Lung Remodeling in Pulmonary Arterial Hypertension

    Full text link
    A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound <b>25</b> shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity

    Optimization of Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for Duration of Action, as an Inhaled Therapy for Lung Remodeling in Pulmonary Arterial Hypertension

    Full text link
    A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound <b>25</b> shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity
    corecore