21 research outputs found

    Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Get PDF
    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition

    Combining Signals for Cross-Lingual Relevance Feedback

    No full text
    Abstract. We present a new cross-lingual relevance feedback model that improves a machine-learned ranker for a language with few training resources, using feedback from a better ranker for a language that has more training resources. The model focuses on linguistically non-local queries, such as [world cup] and [copa mundial], that have similar user intent in different languages, thus allowing the low-resource ranker to get direct relevance feedback from the high-resource ranker. Our model extends prior work by combining both queryand document-level relevance signals using a machine-learned ranker. On an evaluation with web data sampled from a real-world search engine, the proposed cross-lingual feedback model outperforms two state-of-the-art models across two different low-resource languages.

    E-rating Machine Translation

    Get PDF
    We describe our submissions to the WMT11 shared MT evaluation task: MTeRater and MTeRater-Plus. Both are machine-learned metrics that use features from e-rater R â—‹ , an automated essay scoring engine designed to assess writing proficiency. Despite using only features from e-rater and without comparing to translations, MTeRater achieves a sentencelevel correlation with human rankings equivalent to BLEU. Since MTeRater only assesses fluency, we build a meta-metric, MTeRater-Plus, that incorporates adequacy by combining MTeRater with other MT evaluation metrics and heuristics. This meta-metric has a higher correlation with human rankings than either MTeRater or individual MT metrics alone. However, we also find that e-rater features may not have significant impact on correlation in every case.

    Lessons Learned from a PLTL-CS Program

    Get PDF
    The Peer-Led Team Learning (PLTL) approach has previously been shown to be effective in recruiting and retaining students, particularly under-represented students, in undergraduate introductory CS courses. In PLTL, small groups of students are led by an undergraduate peer and work together to solve problems related to CS. At Columbia University, the Columbia Emerging Scholars Program has used PLTL in an effort to increase enrollment in CS courses beyond the introductory level, and to increase the number of students who select Computer Science as their major, by demonstrating that CS is necessarily a collaborative activity that focuses more on problem solving and algorithmic thinking than on programming. Over the past five semesters, 68 students have completed the program, and preliminary results indicate that this program has had a positive effect on increasing participation in the major. This paper discusses our experiences of building and expanding the Columbia Emerging Scholars program, and addresses such topics as recruiting, training, scheduling, student behavior, and evaluation. We expect that this paper will provide a valuable set of lessons learned to other educators who seek to launch or grow a PLTL program at their institution as well

    Simultaneous multilingual search for translingual information retrieval

    Get PDF
    We consider the problem of translingual information retrieval, where monolingual searchers issue queries in a different language than the document language(s) and the results must be returned in the language they know, the query language. We present a framework for translingual IR that integrates document translation and query translation into the retrieval model. The corpus is represented as an aligned, jointly indexed “pseudo-parallel” corpus, where each document contains the text of the document along with its translation into the query language. The queries are formulated as multilingual structured queries, where each query term and its translations into the document language(s) are treated as synonym sets. This model leverages simultaneous search in multiple languages against jointly indexed documents to improve the accuracy of results over search using document translation or query translation alone. For query translation, we compared a statistical machine translation (SMT) approach to a dictionarybased approach. We found that using a Wikipedia-derived dictionary for named entities combined with an SMT-based dictionary worked better than SMT alone. Simultaneous multilingual search also has other important features suited to translingual search, since it can provide an indication of poor document translation when a match with the source document is found. We show how close integration of CLIR and SMT allows us to improve result translation in addition to IR results
    corecore