32 research outputs found

    Isozyme diversity of Garcinia gummigutta (L.) N. Robson in Western Ghat region, South India

    Get PDF
    Isozyme genetic markers are efficient tools to study genetic variations within and betweenpopulations of less known wild species as well as for studies on spatial distribution of geneticvariation.  A study  was conducted with  four  important  isozyme markers namely, peroxidase,polyphenol oxidase, esterase and superoxide dismutase in Garcinia gummigutta  populationcollected from Western Ghats in South India. The cluster analysis of the marker bands showedthat most of the population from similar geographic locations was the first one to groupthemselves, though a significant pattern was not noticed. The mean percentage of polymorphicloci was 52.5%. Total heterozygocity was 0.97 which is consistent with the average of tropicaltree species. &nbsp

    Multicomplementary operators via finite Fourier transform

    Full text link
    A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of dimension d, whenever d is a power of a prime. We discuss a simple construction of d+1 disjoint classes (each one having d-1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.Comment: 15 pages, no figure

    Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    Get PDF
    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs

    Bionanotechnology

    No full text
    This book aims to provide vital information about the growing field of bionanotechnology for undergraduate and graduate students, as well as working professionals in various fields. The fundamentals of nanotechnology are covered along with several specific bionanotechnology applications, including nanobioimaging and drug delivery which is a growing 100 billions industry. The uniqueness of the field has been brought out with unparalleled lucidity; a balance between important insight into the synthetic methods of preparing stable nano-structures and medical applications driven focus educates an
    corecore