19 research outputs found
Prevention of Immune Cell Apoptosis as Potential Therapeutic Strategy for Severe Infections
Lymphocyte apoptosis prevention may improve survival
Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses
Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virusāspecific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon Ī³, interleukin 2, macrophage inflammatory protein 1Ī², and tumor necrosis factor Ī± after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45ROāCD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated
Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+T cell responses
Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virusāspecific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon Ī³, interleukin 2, macrophage inflammatory protein 1Ī², and tumor necrosis factor Ī± after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45ROāCD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated
Efficacy and Safety of a Single Dose of Casirivimab and Imdevimab for the Prevention of COVID-19 Over an 8-Month Period: A Randomised, Double-Blind, Placebo-Controlled Trial
BACKGROUND: There is an unmet need for COVID-19 prevention in patient populations who have not mounted or are not expected to mount an adequate immune response to complete COVID-19 vaccination. We previously reported that a single subcutaneous 1200 mg dose of the monoclonal antibody combination casirivimab and imdevimab (CASā+āIMD) prevented symptomatic SARS-CoV-2 infections by 81Ā·4% in generally healthy household contacts of SARS-CoV-2-infected individuals over a 1-month efficacy assessment period. Here we present additional results, including the 7-month follow-up period (months 2-8), providing additional insights about the potential for efficacy in pre-exposure prophylaxis settings.
METHODS: This was a randomised, double-blind, placebo-controlled trial done in the USA, Romania, and Moldova in 2020-2021, before the emergence of omicron (B.1.1.529) and omicron-lineage variants. Uninfected and unvaccinated household contacts of infected individuals, judged by the investigator to be in good health, were randomly assigned (1:1) to receive 1200 mg CASā+āIMD or placebo by subcutaneous injection according to a central randomisation scheme provided by an interactive web response system; randomisation was stratified per site by the test results of a local diagnostic assay for SARS-CoV-2 and age group at baseline. COVID-19 vaccines were prohibited before randomisation, but participants were allowed to receive COVID-19 vaccination during the follow-up period. Participants who developed COVID-19 symptoms during the follow-up period underwent RT-PCR testing. Prespecified endpoints included the proportion of previously uninfected and baseline-seronegative participants (seronegative-modified full analysis set) who had RT-PCR-confirmed COVID-19 in the follow-up period (post-hoc for the timepoints of months 2-5 and 6-8 only) and underwent seroconversion (ie, became seropositive, considered a proxy for any SARS-CoV-2 infections [symptomatic and asymptomatic]; prespecified up to day 57, post-hoc for all timepoints thereafter). We also assessed the incidence of treatment-emergent adverse events. This study is registered with ClinicalTrials.gov, NCT04452318.
FINDINGS: From July 13, 2020, to Oct 4, 2021, 2317 participants who were RT-PCR-negative for SARS-CoV-2 were randomly assigned, of whom 1683 (841 assigned to CASā+āIMD and 842 assigned to placebo) were seronegative at baseline. During the entirety of the 8-month study, CASā+āIMD reduced the risk of COVID-19 by 81Ā·2% (nominal p
INTERPRETATION: CASā+āIMD is not authorised in any US region as of Jan 24, 2022, because data show that CASā+āIMD is not active against omicron-lineage variants. In this study, done before the emergence of omicron-lineage variants, a single subcutaneous 1200 mg dose of CASā+āIMD protected against COVID-19 for up to 5 months of community exposure to susceptible strains of SARS-CoV-2 in the pre-exposure prophylaxis setting, in addition to the post-exposure prophylaxis setting that was previously shown.
FUNDING: Regeneron Pharmaceuticals, F Hoffmann-La Roche, US National Institute of Allergy and Infectious Diseases, US National Institutes of Health
Usability and Patient Preference Phase 3 Study of the Sarilumab Pen in Patients with Active Moderate-to-Severe Rheumatoid Arthritis
<p><b>Article full text</b></p>
<p><br></p>
<p>The full text of this article can
be found here<b>. </b><a href="https://link.springer.com/article/10.1007/s40744-017-0090-2">https://link.springer.com/article/10.1007/s40744-017-0090-2</a></p><p></p>
<p><br></p>
<p><b>Provide enhanced content for this
article</b></p>
<p><br></p>
<p>If you are an author of this
publication and would like to provide additional enhanced content for your
article then please contact <a href="http://www.medengine.com/Redeem/Ć¢ĀĀmailto:[email protected]Ć¢ĀĀ"><b>[email protected]</b></a>.</p>
<p><br></p>
<p>The journal offers a range of
additional features designed to increase visibility and readership. All
features will be thoroughly peer reviewed to ensure the content is of the
highest scientific standard and all features are marked as āpeer reviewedā to
ensure readers are aware that the content has been reviewed to the same level
as the articles they are being presented alongside. Moreover, all sponsorship
and disclosure information is included to provide complete transparency and
adherence to good publication practices. This ensures that however the content
is reached the reader has a full understanding of its origin. No fees are
charged for hosting additional open access content.</p>
<p><br></p>
<p>Other enhanced features include,
but are not limited to:</p>
<p><br></p>
<p>ā¢ Slide decks</p>
<p>ā¢ Videos and animations</p>
<p>ā¢ Audio abstracts</p>
<p>ā¢ Audio slides</p