8 research outputs found

    Lamin A Rod Domain Mutants Target Heterochromatin Protein 1α and β for Proteasomal Degradation by Activation of F-Box Protein, FBXW10

    Get PDF
    Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood.The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels.Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity

    Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    Get PDF
    Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression.To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction.These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered

    Poly(dG-dC) in the Z-form inhibits E. coli DNA polymerase I and AMV DNA polymerase activity

    Full text link
    The effect of Z-conformation of DNA on its template activity in DNA synthesis reactions in vitro has been studied. Normal poly(dG-dC) in the B-form, brominated and unbrominated in the Z-form have been compared for their template activity in DNA synthesis reactions mediated by AMV DNA polymerase and E. coli DNA polymerase I. The results indicate that poly(dG-dC) in the Z-form is totally inactive as a template for DNA synthesis and further that it is a strong competitive inhibitor of copying of the B-form DNA

    Altered pre-lamin A processing is a common mechanism leading to lipodystrophy.

    Full text link
    Lipodystrophies are a heterogeneous group of human disorders characterized by the anomalous distribution of body fat associated with insulin resistance and altered lipid metabolism. The pathogenetic mechanism of inherited lipodystrophies is not yet clear; at the molecular level they have been linked to mutations of lamin A/C, peroxisome proliferator-activated receptor (PPARgamma) and other seemingly unrelated proteins. In this study, we examined lamin A/C processing in three laminopathies characterized by lipodystrophic phenotypes: Dunnigan type familial partial lipodystrophy, mandibuloacral dysplasia and atypical Werner's syndrome. We found that the lamin A precursor was specifically accumulated in lipodystrophy cells. Pre-lamin A was located at the nuclear envelope and co-localized with the adipocyte transcription factor sterol regulatory element binding protein 1 (SREBP1). Using co-immunoprecipitation experiments, we obtained the first demonstration of an in vivo interaction between SREBP1 and pre-lamin A. Binding of SREBP1 to the lamin A precursor was detected in patient fibroblasts as well as in control fibroblasts forced to accumulate pre-lamin A by farnesylation inhibitors. In contrast, SREBP1 did not interact in vivo with mature lamin A or C in cultured fibroblasts. To gain insights into the effect of pre-lamin A accumulation in adipose tissue, we inhibited lamin A precursor processing in 3T3-L1 pre-adipocytes. Our results show that pre-lamin A sequesters SREBP1 at the nuclear rim, thus decreasing the pool of active SREBP1 that normally activates PPARgamma and causing impairment of pre-adipocyte differentiation. This defect can be rescued by treatment with troglitazone, a known PPARgamma ligand activating the adipogenic program

    Altered pre-lamin A processing is a common mechanism leading to lipodystrophy

    Get PDF
    Lipodystrophies are a heterogeneous group of human disorders characterized by the anomalous distribution of body fat associated with insulin resistance and altered lipid metabolism. The pathogenetic mechanism of inherited lipodystrophies is not yet clear; at the molecular level they have been linked to mutations of lamin A/C, peroxisome proliferator-activated receptor (PPAR gamma) and other seemingly unrelated proteins. In this study, we examined lamin A/C processing in three laminopathies characterized by lipodystrophic phenotypes: Dunnigan type familial partial lipodystrophy, mandibuloacral dysplasia and atypical Werner's syndrome. We found that the lamin A precursor was specifically accumulated in lipodystrophy cells. Pre-lamin A was located at the nuclear envelope and co-localized with the adipocyte transcription factor sterol regulatory element binding protein 1 (SREBP1). Using co-immunoprecipitation experiments, we obtained the first demonstration of an in vivo interaction between SREBP1 and pre-lamin A. Binding of SREBP1 to the lamin A precursor was detected in patient fibroblasts as well as in control fibroblasts forced to accumulate pre-lamin A by farnesylation inhibitors. In contrast, SREBP1 did not interact in vivo with mature lamin A or C in cultured fibroblasts. To gain insights into the effect of pre-lamin A accumulation in adipose tissue, we inhibited lamin A precursor processing in 3T3-L1 pre-adipocytes. Our results show that pre-lamin A sequesters SREBP1 at the nuclear rim, thus decreasing the pool of active SREBP1 that normally activates PPAR gamma and causing impairment of pre-adipocyte differentiation. This defect can be rescued by treatment with troglitazone, a known PPAR gamma ligand activating the adipogenic program
    corecore