39,986 research outputs found
Recommended from our members
Turning Theory into Practice: A Case Study in the Arts
Students who take art and music courses learn not only content, but also develop new ways of thinking, communicating, and evaluating. Ultimately, such classes teach students to hear and to see, to be comfortable with ambiguity, to examine issues from multiple perspectives, and to develop sound strategies for working through confusing and sometimes controversial issues. We argue that the ways of thinking presented in these courses can transfer to any discipline. This article presents a targeted case study of our experience tailoring a multi-disciplinary arts course specifically to nursing students. We outline the course construction, document our findings, assess our results, and argue for the benefits of visual and aural training
Vacuum fluctuations in a supersymmetric model in FRW spacetime
We study a noninteracting supersymmetric model in an expanding FRW spacetime.
A soft supersymmetry breaking induces a nonzero contribution to the vacuum
energy density. A short distance cutoff of the order of Planck length provides
a scale for the vacuum energy density comparable with the observed cosmological
constant. Assuming the presence of a dark energy substance in addition to the
vacuum fluctuations of the field an effective equation of state is derived in a
selfconsistent approach. The effective equation of state is sensitive to the
choice of the cut-off but no fine tuning is needed.Comment: 19 pages, accepted for publication in Phys. Rev.
Turbulent magnetic dynamo excitation at low magnetic Prandtl number
Planetary and stellar dynamos likely result from turbulent motions in
magnetofluids with kinematic viscosities that are small compared to their
magnetic diffusivities. Laboratory experiments are in progress to produce
similar dynamos in liquid metals. This work reviews recent computations of
thresholds in critical magnetic Reynolds number above which dynamo
amplification can be expected for mechanically-forced turbulence (helical and
non-helical, short wavelength and long wavelength) as a function of the
magnetic Prandtl number . New results for helical forcing are discussed,
for which a dynamo is obtained at . The fact that the
kinetic turbulent spectrum is much broader in wavenumber space than the
magnetic spectrum leads to numerical difficulties which are bridged by a
combination of overlapping direct numerical simulations and subgrid models of
magnetohydrodynamic turbulence. Typically, the critical magnetic Reynolds
number increases steeply as the magnetic Prandtl number decreases, and then
reaches an asymptotic plateau at values of at most a few hundred. In the
turbulent regime and for magnetic Reynolds numbers large enough, both small and
large scale magnetic fields are excited. The interactions between different
scales in the flow are also discussed.Comment: 8 pages, 8 figures, to appear in Physics of Plasma
New Structure In The Shapley Supercluster
We present new radial velocities for 189 galaxies in a 91 sq. deg region of
the Shapley supercluster measured with the FLAIR-II spectrograph on the UK
Schmidt Telescope. The data reveal two sheets of galaxies linking the major
concentrations of the supercluster. The supercluster is not flattened in
Declination as was suggested previously and it may be at least 30 percent
larger than previously thought with a correspondingly larger contribution to
the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear
in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology,
held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie
Surface acoustic wave stabilized oscillators
Four areas of surface acoustic wave (SAW) controlled oscillators were investigated and a number of 401.2 MHz oscillators were constructed that showed improved performance. Aging studies on SAW devices packaged in HC36/U cold weld enclosures produced frequency drifts as low as 0.4 ppm in 35 weeks and drift rates well under 0.5 ppm/year. Temperature compensation circuits have substantially improved oscillator temperature stability, with a deviation of + or - 4 ppm observed over the range -45 C to + 40 C. High efficiency amplifiers were constructed for SAW oscillators and a dc to RF efficiency of 44 percent was obtained for an RF output of 25 mW. Shock and vibration tests were made on four oscillators and all survived 500 G shock pulses unchanged. Only when white noise vibration (20 Hz to 2000 Hz) levels of 20 G's rms were applied did some of the devices fail
Evaluation of CBS 600 carburized steel as a gear material
Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness
Hidden Dirac Monopoles
Dirac showed that the existence of one magnetic pole in the universe could
offer an explanation of the discrete nature of the electric charge. Magnetic
poles appear naturally in most grand unified theories. Their discovery would be
of greatest importance for particle physics and cosmology. The intense
experimental search carried thus far has not met with success. I proposed a
universe with magnetic poles which are not observed free because they hide in
deeply bound monopole--anti-monopole states named monopolium. I discuss the
realization of this proposal and its consistency with known cosmological
features. I furthermore analyze its implications and the experimental
signatures that confirm the scenario.Comment: Comments: 15 pages, 3 figure
Relation Between Einstein And Quantum Field Equations
We show that there exists a choice of scalar field modes, such that the
evolution of the quantum field in the zero-mass and large-mass limits is
consistent with the Einstein equations for the background geometry. This choice
of modes is also consistent with zero production of these particles and thus
corresponds to a preferred vacuum state preserved by the evolution. In the
zero-mass limit, we find that the quantum field equation implies the Einstein
equation for the scale factor of a radiation-dominated universe; in the
large-mass case, it implies the corresponding Einstein equation for a
matter-dominated universe. Conversely, if the classical radiation-dominated or
matter-dominated Einstein equations hold, there is no production of scalar
particles in the zero and large mass limits, respectively. The suppression of
particle production in the large mass limit is over and above the expected
suppression at large mass. Our results hold for a certain class of conformally
ultrastatic background geometries and therefore generalize previous results by
one of us for spatially flat Robertson-Walker background geometries. In these
geometries, we find that the temporal part of the graviton equations reduces to
the temporal equation for a massless minimally coupled scalar field, and
therefore the results for massless particle production hold also for gravitons.
Within the class of modes we study, we also find that the requirement of zero
production of massless scalar particles is not consistent with a non-zero
cosmological constant. Possible implications are discussed.Comment: Latex, 24 pages. Minor changes in text from original versio
Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism
The generation of the baryon asymmetry of the Universe (BAU) from the
hypermagnetic helicity, the physical interpretation of which is given in terms
of hypermagnetic knots, is studied in inflationary cosmology, taking into
account the breaking of the conformal invariance of hypercharge electromagnetic
fields through both a coupling with the dilaton and that with a pseudoscalar
field. It is shown that if the electroweak phase transition (EWPT) is strongly
first order and the present amplitude of the generated magnetic fields on the
horizon scale is sufficiently large, a baryon asymmetry with a sufficient
magnitude to account for the observed baryon to entropy ratio can be generated.Comment: 16 pages, 2 figures, a reference added, typos correcte
Buffalo National River Ecosystems - Part II
The priorities were established for the Buffalo National River Ecosystem Studies through meetings and correspondence with Mr. Roland Wauer and other personnel of the Office of Natural Sciences, Southwest Region of the National Park Service. These priorities were set forth in the appendix of contract no. CX 700050443 dated May 21, 1975
- …