183 research outputs found
On the Effectiveness of Genetic Search in Combinatorial Optimization
In this paper, we study the efficacy of genetic algorithms in the context of combinatorial optimization. In particular, we isolate the effects of cross-over, treated as the central component of genetic search. We show that for problems of nontrivial size and difficulty, the contribution of cross-over search is marginal, both synergistically when run in conjunction with mutation and selection, or when run with selection alone, the reference point being the search procedure consisting of just mutation and selection. The latter can be viewed as another manifestation of the Metropolis process. Considering the high computational cost of maintaining a population to facilitate cross-over search, its marginal benefit renders genetic search inferior to its singleton-population counterpart, the Metropolis process, and by extension, simulated annealing. This is further compounded by the fact that many problems arising in practice may inherently require a large number of state transitions for a near-optimal solution to be found, making genetic search infeasible given the high cost of computing a single iteration in the enlarged state-space.NSF (CCR-9204284
How Good are Genetic Algorithms at Finding Large Cliques: An Experimental Study
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set.
As we scale up the problem size and test on \hard" benchmark instances, we notice a
degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found.
We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration.
Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.NSF (CCR-9204284
Ergodicity and Mixing Rate of One-Dimensional Cellular Automata
One-and two-dimensional cellular automata which are known to be fault-tolerant are very complex. On the other hand, only very simple cellular automata have actually been proven to lack fault-tolerance, i.e., to be mixing. The latter either have large noise probability ε or belong to the small family of two-state nearest-neighbor monotonic rules which includes local majority voting.
For a certain simple automaton L called the soldiers rule, this problem has intrigued researchers for the last two decades since L is clearly more robust than local voting: in the absence of noise, L eliminates any finite island of perturbation from an initial configuration of all 0's or all 1's. The same holds for a 4-state monotonic variant of L, K, called two-line voting. We will prove that the probabilistic cellular automata Kε and Lε asymptotically lose all information about their initial state when subject to small, strongly biased noise. The mixing property trivially implies that the systems are ergodic.
The finite-time information-retaining quality of a mixing system can be represented by its relaxation time Relax(⋅), which measures the time before the onset of significant information loss. This is known to grow as (1/ε)^c for noisy local voting. The impressive error-correction ability of L has prompted some researchers to conjecture that Relax(Lε) = 2^(c/ε). We prove the tight bound 2^(c1log^21/ε) < Relax(Lε) < 2^(c2log^21/ε) for a biased error model. The same holds for Kε. Moreover, the lower bound is independent of the bias assumption. The strong bias assumption makes it possible to apply sparsity/renormalization techniques, the main tools of our investigation, used earlier in the opposite context of proving fault-tolerance
Ergodicity and Mixing Rate of One-Dimensional Cellular Automata
One-and two-dimensional cellular automata which are known to be fault-tolerant are very complex. On the other hand, only very simple cellular automata have actually been proven to lack fault-tolerance, i.e., to be mixing. The latter either have large noise probability ε or belong to the small family of two-state nearest-neighbor monotonic rules which includes local majority voting.
For a certain simple automaton L called the soldiers rule, this problem has intrigued researchers for the last two decades since L is clearly more robust than local voting: in the absence of noise, L eliminates any finite island of perturbation from an initial configuration of all 0's or all 1's. The same holds for a 4-state monotonic variant of L, K, called two-line voting. We will prove that the probabilistic cellular automata Kε and Lε asymptotically lose all information about their initial state when subject to small, strongly biased noise. The mixing property trivially implies that the systems are ergodic.
The finite-time information-retaining quality of a mixing system can be represented by its relaxation time Relax(⋅), which measures the time before the onset of significant information loss. This is known to grow as (1/ε)^c for noisy local voting. The impressive error-correction ability of L has prompted some researchers to conjecture that Relax(Lε) = 2^(c/ε). We prove the tight bound 2^(c1log^21/ε) < Relax(Lε) < 2^(c2log^21/ε) for a biased error model. The same holds for Kε. Moreover, the lower bound is independent of the bias assumption. The strong bias assumption makes it possible to apply sparsity/renormalization techniques, the main tools of our investigation, used earlier in the opposite context of proving fault-tolerance
A Lower-Bound Result on the Power of a Genetic Algorithm
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic
functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead
Network QoS games: stability vs optimality tradeoff
AbstractWe study noncooperative games whose players are selfish, distributed users of a network and the game's broad objective is to optimize Quality of Service (QoS) provision. Our classes of games are based on realistic microeconomic market models of QoS provision (Proceedings of the First International Conference on Information and Computation Economics ICE’98, 1998) and have two competing characteristics—stability and optimality. Stability refers to whether the game reaches a Nash equilibrium. Optimality is a measure of how close a Nash equilibrium is to optimizing a given objective function defined on game configuration. The overall goal is to determine a minimal set of static game rules based on pricing that result in stable and efficient QoS provision. We give a new and general technique to establish stability and demonstrate a close trade-off between stability and optimality for our game classes. We also state several open problems and directions together with initial observations and conjectures
Using Warp to Control Network Contention in Mermera
Parallel computing on a network of workstations can saturate the communication network, leading to excessive message delays and consequently poor application performance. We examine empirically the consequences of integrating a flow control protocol, called Warp control [Par93], into Mermera, a software shared memory system that supports parallel computing on distributed systems [HS93].
For an asynchronous iterative program that solves a system of linear equations, our measurements show that Warp succeeds in stabilizing the network's behavior even under high levels of contention. As a result, the application achieves a higher effective communication throughput, and a reduced completion time. In some cases, however, Warp control does not achieve the performance attainable by fixed size buffering when using a statically optimal buffer size.
Our use of Warp to regulate the allocation of network bandwidth emphasizes the possibility for integrating it with the allocation of other resources, such as CPU cycles and disk bandwidth, so as to optimize overall system throughput, and enable fully-shared execution of parallel programs.NSF (IRI-8910195, IRI-9041581, CDA-8920936, CCR-9204284
Mapping Parallel Iterative Algorithms onto Workstation Networks
For communication-intensive parallel applications, the maximum degree of concurrency achievable is limited by the communication throughput made available by the network. In previous work [HPS94], we showed experimentally that the performance of certain parallel applications running on a workstation network can be improved significantly if a congestion control protocol is used to enhance network performance.
In this paper, we characterize and analyze the communication requirements of a large class of supercomputing applications that fall under the category of fixed-point problems, amenable to solution by parallel iterative methods. This results in a set of interface and architectural features sufficient for the efficient implementation of the applications over a large-scale distributed system.
In particular, we propose a direct link between the application and network layer, supporting congestion control actions at both ends. This in turn enhances the system's responsiveness to network congestion, improving performance.
Measurements are given showing the efficacy of our scheme to support large-scale parallel computations.National Science Foundation (IRI-8910195, IRI-9041581 and CDA-8920936
A hedonic wage regression model for vulnerable workers in Malaysia: the use of exclusion restriction as a remedy for self-selection bias
This paper uses an exclusion restriction variable as the key to resolve an identification problem in self-selection bias of a wage regression model. The study basically utilizes Hedonic Wage Theory (Rosen 1986, 1974) to test the relationship between vulnerable workers and wage. Analysis was made using the Mincerian semi-log earnings function (Mincer 1974) specified in the tradition of Becker’s Human Capital Model (Becker 1964) with a correction for self-selection bias. A total of 1705 private sector employees were selected and the result showed that the coefficient for predicted vulnerable worker variable was significant but non-positive. The implication of this result is that no adjustments in wages are made to compensate workers for undesirable job conditions. A third party, namely government interventions, is therefore needed in order to protect and enhance the well-being of the vulnerable workers
- …