5 research outputs found

    Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

    Get PDF
    Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to 50 degrees C, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear

    Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight

    No full text
    Erwinia pyrifoliae is a Gram-negative bacterium causing black shoot blight in apple and Asian pear trees. E. pyrifoliae strain EpK1/15 was isolated in 2014 from an apple twig from the Pocheon, Gyeonggi-do, South Korea. In this study, we report the draft genome sequence of E. pyrifoliae EpK1/15 using PacBio RS II platform. The draft genome is comprised of a circular chromosome with 4,027,225 bp and 53.4% G + C content and a plasmid with 48,456 bp and 50.3% G + C content. The draft genome includes 3,798 protein-coding genes, 22 rRNA genes, 77 tRNA genes, 13 non-coding RNA genes, and 231 pseudo genes

    Characterization of Novel Erwinia amylovora Jumbo Bacteriophages from Eneladusvirus Genus

    No full text
    Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate and characterize other jumbo phages. We performed comparative genomic analysis of three Erwinia phages (pEa_SNUABM_12, pEa_SNUABM_47, and pEa_SNUABM_50), each of which had a genome size of approximately 360 kb (32.5% GC content). These phages were predicted to harbor 546, 540, and 540 open reading frames with 32, 34, and 35 tRNAs, respectively. Almost all of the genes in these phages could not be functionally annotated but showed high sequence similarity with genes encoded in Serratia phage BF, a member of Eneladusvirus. The detailed comparative and phylogenetic analyses presented in this study contribute to our understanding of the diversity and evolution of Erwinia phage and the genus Eneladusvirus.Y

    The Bacteriophage pEp_SNUABM_08 Is a Novel Singleton Siphovirus with High Host Specificity for Erwinia pyrifoliae

    No full text
    Species belonging to the genus Erwinia are predominantly plant pathogens. A number of bacteriophages capable of infecting Erwinia have been used for the control of plant diseases such as fire blight. Public repositories provide the complete genome information for such phages, which includes genomes ranging from 30 kb to 350 kb in size. However, limited information is available regarding bacteriophages belonging to the family Siphoviridae. A novel lytic siphophage, pEp_SNUABM_08, which specifically infects Erwinia pyrifoliae, was isolated from the soil of an affected apple orchard in South Korea. A comprehensive genome analysis was performed using the Erwinia-infecting siphophage. The whole genome of pEp_SNUABM_08 comprised 62,784 bp (GC content, 57.24%) with 79 open reading frames. The genomic characteristics confirmed that pEp_SNUABM_08 is a singleton lytic bacteriophage belonging to the family Siphoviridae, and no closely related phages have been reported thus far. Our study not only characterized a unique phage, but also provides insight into the genetic diversity of Erwinia bacteriophages
    corecore