14 research outputs found

    A Prototype of a Neural, Powered, Transtibial Prosthesis for the Cat: Benchtop Characterization

    Get PDF
    We developed a prototype of a neural, powered, transtibial prosthesis for the use in a feline model of prosthetic gait. The prosthesis was designed for attachment to a percutaneous porous titanium implant integrated with bone, skin, and residual nerves and muscles. In the benchtop testing, the prosthesis was fixed in a testing rig and subjected to rhythmic vertical displacements and interactions with the ground at a cadence corresponding to cat walking. Several prosthesis functions were evaluated. They included sensing ground contact, control of transitions between the finite states of prosthesis loading, and a closed-loop modulation of the linear actuator gain in each loading cycle. The prosthetic design parameters (prosthesis length = 55 mm, mass = 63 g, peak extension moment = 1 Nm) corresponded closely to those of the cat foot-ankle with distal shank and the peak ankle extension moment during level walking. The linear actuator operated the prosthetic ankle joint using inputs emulating myoelectric activity of residual muscles. The linear actuator gain was modulated in each cycle to minimize the difference between the peak of ground reaction forces (GRF) recorded by a ground force sensor and a target force value. The benchtop test results demonstrated a close agreement between the GRF peaks and patterns produced by the prosthesis and by cats during level walking

    Qualitative assessment of Tongue Drive System by people with high-level spinal cord injury

    Get PDF
    The Tongue Drive System (TDS) is a minimally invasive, wireless, and wearable assistive technology (AT) that enables people with severe disabilities to control their environments using tongue motion. TDS translates specific tongue gestures into commands by sensing the magnetic field created by a small magnetic tracer applied to the user’s tongue. We have previously quantitatively evaluated the TDS for accessing computers and powered wheelchairs, demonstrating its usability. In this study, we focused on its qualitative evaluation by people with high-level spinal cord injury who each received a magnetic tongue piercing and used the TDS for 6 wk. We used two questionnaires, an after-scenario and a poststudy, designed to evaluate the tongue-piercing experience and the TDS usability compared with that of the sip-and-puff and the users’ current ATs. After study completion, 73% of the participants were positive about keeping the magnetic tongue-barbell in order to use the TDS. All were satisfied with the TDS performance and most said that they were able to do more things using TDS than their current ATs (4.22/5)

    Gait optimization with a real-time closed-loop artificial sensory feedback

    Get PDF
    Individuals with unilateral lower limb musculoskeletal and neurological conditions, including prosthetic users, experience asymmetric walking. It may result in undesirable compensations by the body and secondary conditions (osteoarthritis, low back pain, etc.). My goal was to develop a real-time closed-loop control system for a sensing, bone-anchored transtibial prosthesis interfaced with residual peripheral nerves and muscles. The prosthesis and control system would allow users to sense ground contact during walking and control the prosthetic ankle using natural motor commands to automatically correct asymmetries and instability of walking. To inform the design of the prosthesis and control system, I investigated in walking cats the effects of manipulating tactile sensory feedback from paw pads and stretch-dependent feedback from thigh muscles on symmetry and stability of walking. I found that removal of tactile and muscle length-dependent feedback resulted in profound changes in symmetry and stability of walking. In addition, electrical stimulation of the distal tibial nerve, innervating paw pads, during the stance phase of walking substantially reduced and sometimes reversed effects of sensory feedback removal. I then demonstrated that a real-time closed-loop gait control system could control step length symmetry of walking cats by stimulation of the distal tibial nerve. This system could be used for correcting asymmetries during walking in people with sensorimotor deficits. I also developed a prototype of a sensing transtibial prosthesis with an ankle joint controlled by activity of residual muscles. The results of this study provide new insights into the role of sensory feedback in control of locomotion and offer new engineering solutions for bone-anchored, limb neuro-prostheses and for improving pathological gait.Ph.D

    An Arch-Shaped Intraoral Tongue Drive System with Built-in Tongue-Computer Interfacing SoC

    No full text
    We present a new arch-shaped intraoral Tongue Drive System (iTDS) designed to occupy the buccal shelf in the user’s mouth. The new arch-shaped iTDS, which will be referred to as the iTDS-2, incorporates a system-on-a-chip (SoC) that amplifies and digitizes the raw magnetic sensor data and sends it wirelessly to an external TDS universal interface (TDS-UI) via an inductive coil or a planar inverted-F antenna. A built-in transmitter (Tx) employs a dual-band radio that operates at either 27 MHz or 432 MHz band, according to the wireless link quality. A built-in super-regenerative receiver (SR-Rx) monitors the wireless link quality and switches the band if the link quality is below a predetermined threshold. An accompanying ultra-low power FPGA generates data packets for the Tx and handles digital control functions. The custom-designed TDS-UI receives raw magnetic sensor data from the iTDS-2, recognizes the intended user commands by the sensor signal processing (SSP) algorithm running in a smartphone, and delivers the classified commands to the target devices, such as a personal computer or a powered wheelchair. We evaluated the iTDS-2 prototype using center-out and maze navigation tasks on two human subjects, which proved its functionality. The subjects’ performance with the iTDS-2 was improved by 22% over its predecessor, reported in our earlier publication

    Forehead Tactile Hallucination Is Augmented by the Perceived Risk and Accompanies Increase of Forehead Tactile Sensitivity

    No full text
    Tactile hallucinations frequently occur after mental illnesses and neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. Despite their common occurrence, there are several complicating factors that make it difficult to elucidate the tactile hallucinations. The forehead tactile hallucination, evoked by the physical object approaching to the forehead, can be easily and consistently evoked in healthy-bodied subjects, and therefore it would help with investigating the mechanism of tactile hallucinations. In this pilot study, we investigated the principles of the forehead tactile hallucination with eight healthy subjects. We designed the experimental setup to test the effect of sharpness and speed of objects approaching towards the forehead on the forehead tactile hallucination, in both a physical and virtual experimental setting. The forehead tactile hallucination was successfully evoked by virtual object as well as physical object, approaching the forehead. The forehead tactile hallucination was increased by the increase of sharpness and speed of the approaching object. The forehead tactile hallucination also increased the tactile sensitivity on the forehead. The forehead tactile hallucination can be solely evoked by visual feedback and augmented by the increased perceived risk. The forehead tactile hallucination also increases tactile sensitivity. These experimental results may enhance the understanding of the foundational mechanisms of tactile hallucinations

    A Millimeter-Wave Fundamental Frequency CMOS-Based Oscillator with High Output Power

    No full text
    The millimeter-wave imaging approach is a promising candidate to satisfy the unmet needs of real-time biomedical imaging, such as resolution, focal area, and cost. As a part of the endeavor to make millimeter-wave imaging more feasible, this paper presents a CMOS oscillator generating a high output power at the millimeter-wave frequency range, with a high fundamental oscillation frequency. The proposed oscillator adopts a frequency-selective negative resistance topology to improve the negative transconductance and to increase the fundamental frequency of oscillation. The proposed oscillator was implemented in a 65 nm bulk CMOS process. The measured highest output power is −2.2 dBm at 190 GHz while dissipating 100 mW from a 2.8 V supply voltage

    A New Approach of Minimizing Midas Touch Problem for a Tracer-Free Tongue-Controlled Assistive Technology

    No full text

    A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    No full text
    corecore