17 research outputs found

    The Effect of vane clocking on the unsteady flow field in a one and half stage transonic turbine

    No full text
    none6O. Schennach; R. Pecnik; B. Paradiso; E. Göttlich; A. Marn; J. WoisetschlägerO., Schennach; R., Pecnik; Paradiso, Berardo; E., Göttlich; A., Marn; J., Woisetschläge

    Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines

    No full text
    In this paper, the aerodynamics of two vertical axis wind turbines (VAWTs) are discussed, on the basis of a wide set of experiments performed at Politecnico di Milano, Milan, Italy. A H-shaped and a Troposkien Darrieus turbine for microgeneration, featuring the same swept area and blade section, are tested at full-scale. Performance measurements show that the Troposkien rotor outperforms the H-shaped turbine, thanks to the larger midspan section of the Troposkien rotor and to the nonaerodynamic struts of the H-shaped rotor. These features are consistent with the character of the wakes shed by the turbines, measured by means of hot wire anemometry on several surfaces downstream of the models. The H-shape and Troposkien turbine wakes exhibit relevant differences in the three-dimensional morphology and unsteady evolution. In particular, large-scale vortices dominate the tip region of the wake shed by the H-shape turbine; these vortices pulsate significantly during the period, due to the periodic fluctuation of the blade aerodynamic loading. Conversely, the highly tapered shape of the Troposkien rotor not only prevents the onset of tip vortices, but also induces a dramatic spanwise reduction of tip speed ratio (TSR), promoting the onset of local dynamic stall marked by high periodic and turbulent unsteadiness in the tip region of the wake. The way in which these mechanisms affect the wake evolution and mixing process for the two classes of turbines is investigated for different tip speed ratios, highlighting some relevant implications in the framework of wind energy exploitation

    Experimental and numerical investigation of the performance impact of a heavily off-design inlet swirl angle in a steam turbine stage

    No full text
    The aim of this work is to provide an insight into the performance reduction of a 1.5 axial steam turbine stage working under extreme incidence conditions at the inlet. In particular, the main object of the study is the propagation of the loss cores across the blade rows, so as to assess how such operating conditions affect the full machine. Experimental data have been used to validate an unsteady three-dimensional numerical simulation, which provided the tools to investigate the flowfield in detail. To do so, the 1.5 turbine stage installed in the Low Speed Test Rig at Politecnico di Milano has been tested with design and off-design inlet conditions by modifying the IGV orientation. The inter-stage flowfield was investigated by traversing pressure probes in three different axial planes, downstream of each blade row. The numerical simulation has been carried out at University of Florence. The experimental data from probes traversing was used as boundary conditions so as to match as closely as possible the actual operative parameters of the stage. Data from flange-toflange measurements on the test rig were also used to compare the stage efficiency. After the successful validation of the numerical results, the loss cores propagation study itself was carried out. Using CFD results, the unsteady nature of the separation occurring on the first stator in off-design condition is investigated. Subsequently, a detailed analysis of the propagation of the loss cores is presented, including loss coefficients calculation and entropy trends along the machines axial coordinate. The main outcome is that at the machine exit the loss structures appear to be mainly mixed out and, therefore, subsequent stages would operate under conditions not far from the nominal ones

    Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines

    No full text
    In this paper, the aerodynamics of two vertical axis wind turbines (VAWTs) are discussed, on the basis of a wide set of experiments performed at Politecnico di Milano, Milan, Italy. A H-shaped and a Troposkien Darrieus turbine for microgeneration, featuring the same swept area and blade section, are tested at full-scale. Performance measurements show that the Troposkien rotor outperforms the H-shaped turbine, thanks to the larger midspan section of the Troposkien rotor and to the nonaerodynamic struts of the H-shaped rotor. These features are consistent with the character of the wakes shed by the turbines, measured by means of hot wire anemometry on several surfaces downstream of the models. The H-shape and Troposkien turbine wakes exhibit relevant differences in the three-dimensional morphology and unsteady evolution. In particular, large-scale vortices dominate the tip region of the wake shed by the H-shape turbine; these vortices pulsate significantly during the period, due to the periodic fluctuation of the blade aerodynamic loading. Conversely, the highly tapered shape of the Troposkien rotor not only prevents the onset of tip vortices, but also induces a dramatic spanwise reduction of tip speed ratio (TSR), promoting the onset of local dynamic stall marked by high periodic and turbulent unsteadiness in the tip region of the wake. The way in which these mechanisms affect the wake evolution and mixing process for the two classes of turbines is investigated for different tip speed ratios, highlighting some relevant implications in the framework of wind energy exploitation

    Numerical and experimental investigation of axial gap variation in high pressure steam turbine stages

    No full text
    This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied, in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of threedimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two set of measurements were performed. Steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, stage work. Steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and span-wise distributions shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two dimensional maps downstream of rotor row shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40% and 95% of S1 axial chord), and five aspect ratios (1.0, 1.6, 3, 4 and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail

    An experimental study of the aerodynamic forcing function in a 1.5 steam turbine stage

    No full text
    The usual ways to measure the aerodynamic forcing function are complex and expensive. The aim of this work is to evaluate the forces acting on the blades using a relatively simpler experimental methodology based on a time-resolved pressure measurement at the rotor discharge. Upstream of the rotor, a steady three holes probe has been used. The post processing procedures are described in detail, including the application of a phase-locked average and of an extension algorithm with phase-lag. The algorithm for the computation of the force components is presented, along with the underlying assumptions. In order to interpret the results, a preliminary description of the flow field, both upstream and downstream of the rotor, is provided. This gives an insight of the most relevant features that affect the computation of the forces. Finally, the analysis of the results is presented. These are first described and then compared with overall section-Average results (torque-sensor), and with the results from 3D unsteady simulations (integral of pressure over the blade surface) in order to assess the accuracy of the method. Both the experimental and the numerical results are also compared for two different operating conditions with increasing stage load
    corecore