25 research outputs found
Growth rates of permutation classes: categorization up to the uncountability threshold
In the antecedent paper to this it was established that there is an algebraic
number such that while there are uncountably many growth
rates of permutation classes arbitrarily close to , there are only
countably many less than . Here we provide a complete characterization of
the growth rates less than . In particular, this classification
establishes that is the least accumulation point from above of growth
rates and that all growth rates less than or equal to are achieved by
finitely based classes. A significant part of this classification is achieved
via a reconstruction result for sum indecomposable permutations. We conclude by
refuting a suggestion of Klazar, showing that is an accumulation point
from above of growth rates of finitely based permutation classes.Comment: To appear in Israel J. Mat
Universal Layered Permutations
We establish an exact formula for the length of the shortest permutation containing all layered permutations of length n, proving a conjecture of Gray
Pattern-Avoiding Involutions: Exact and Asymptotic Enumeration
We consider the enumeration of pattern-avoiding involutions, focusing in
particular on sets defined by avoiding a single pattern of length 4. As we
demonstrate, the numerical data for these problems demonstrates some surprising
behavior. This strange behavior even provides some very unexpected data related
to the number of 1324-avoiding permutations
Staircases, dominoes, and the growth rate of 1324-avoiders
We establish a lower bound of 10.271 for the growth rate of the permutations avoiding 1324, and an upper bound of 13.5. This is done by first finding the precise growth rate of a subclass whose enumeration is related to West-2-stack-sortable permutations, and then combining copies of this subclass in particular ways